1 сколько Километров проедет машина от Д осинки до с абашево, если она поедет по шоссе 2 найдите расстояние от д ольгино до д владимировка по прямой 3 сколько минут затратит на дорогу по шоссе валерий александрович до с абашево 4 определите. На какой маршрут до с абашево потребкется меньше всего времени в ответе укажите сколько минут потратил на дорогу василий Александрович если поедет этим маршрутом
По описанию можно определить названия населённых пунктов соответствующие заданным номерам (Задание 1: см. рисунок 1).
Для решения заданий рассмотрим рисунок 2.
Задание 2: Найдите расстояние от Николаево до Зябликово. От деревни Старая до села Николаево 15 км (15 клеток) и от деревни Зябликово до деревни Старая 8 км (8 клеток).
Так как по условию поворота у деревни Старая, то есть ∠213 прямой, то верна теорема Пифагора и расстояние (обозначим через d):
Задание 3: Сколько километров проедут Гриша с дедушкой, если они в Зябликово свернут на тропинку, идущую мимо пруда?
От деревни Осиновка до деревни Зябликово 12 км (12 клеток), а от деревни Зябликово до села Николаево 17 км (см. задание 2). Тогда
d(Осиновка-Зябликово-Николаево) = d(Осиновка-Зябликово) + d(Зябликово-Николаево) = 12 км + 17 км = 29 км.
Задание 4: Сколько времени затратят на дорогу Гриша с дедушкой, если поедут по прямой лесной дороге?
Гриша с дедушкой едут по лесной дороге со скоростью 10 км/час. Если Гриша с дедушкой поедут по прямой лесной дороге, то пройдут расстояние d(Осиновка-Николаево).
Определим это расстояние: от деревни Старая до села Николаево 15 км (15 клеток) и от деревни Осиновка до деревни Старая 20 км (20 клеток), то теореме Пифагора
d²(Осиновка-Николаево) = d²(Осиновка-Старая)+ d²(Старая-Николаево) = (15 км)²+(20 км)² = 225 км² + 400 км² = 625 км² = (25 км)²
или d(Осиновка-Николаево) = 25 км.
Из формулы зависимости расстояния S (мы обозначили расстояние через d) от скорости и времени S = v • t получим
t = S / v = d(Осиновка-Николаево) / v = 25 км/ (10 км/час) = 2,5 часа = 2 часа 30 минут.
15% = 15/100 = 0,15 Пусть х - это количество деталей, изготовленных рабочим в первый день.Тогда х+0,15х=1,15х количество изготовленных деталей во второй день.И в третий день он изготовил 1,15х+10 деталей.По условию рабочий за три дня изготовил 208 деталей. Составим уравнение: х + 1,15х + 1,15х + 10 = 208 2,3х = 208 - 10 3,3х = 198 х = 198 : 3,3 х=60 - деталей в первый день 1)1,15 * 60 = 69 - деталей во второй день 2)69 + 10 = 79 - деталей в третий день ответ6в первый день-60 деталей;во второй день-69 деталей и в третий день-79 деталей
Линейная функция – это функция, которую можно задать формулойy=kx+m, где x – независимая переменная, k и m – некоторые числа.Применяя эту формулу, зная конкретное значение x, можно вычислить соответствующее значение y.Пусть y=0,5x−2.Тогда:если x=0, то y=−2;если x=2, то y=−1;если x=4, то y=0 и т.д. Обычно эти результаты оформляют в виде таблицы:x024y−2−10x - независимая переменная (или аргумент),y - зависимая переменная.Графиком линейной функции y=kx+m является прямая.Чтобы построить график данной функции, нам нужны координаты двух точек, принадлежащих графику функции. Построим на координатной плоскости xOy точки (0;−2) и (4;0) ипроведём через них прямую. Многие реальные ситуации описываются математическими моделями, представляющими собой линейные функции.Пример:На складе было 500 т угля. Ежедневно стали подвозить по 30 т угля. Сколько угля будет на складе через 2; 4; 10дней? Если пройдёт x дней, то количество y угля на складе (в тоннах) выразится формулой y=500+30x. Таким образом, линейная функция y=30x+500 есть математическая модель ситуации.При x=2 имеем y=560;при x=4 имеем y=620;при x=10 имеем y=800 и т.д.Однако надо учитывать, что в этой ситуации x∈N.Если линейную функцию y=kx+m надо рассматривать не при всех значениях x, а лишь для значений x из некоторого числового множества X, то пишут y=kx+m,x∈X.Пример:Построить график линейной функции:a) y=−2x+1,x∈[−3;2] b) y=−2x+1,x∈(−3;2) Составим таблицу значений функции:x−32y7−3 Построим на координатной плоскости xOy точки (−3;7) и (2;−3) ипроведём через них прямую. Далее выделим отрезок, соединяющий построенные точки.Этот отрезок и есть график линейной функции y=−2x+1,x∈[−3;2].Точки (−3;7) и (2;−3) на рисунке отмечены тёмными кружочками. b) Во втором случае функция та же, только значения x=−3 и x=2 не рассматриваются, так как они не принадлежат интервалу (−3;2). Поэтому точки (−3;7) и (2;−3) на рисунке отмечены светлыми кружочками. Рассматривая график линейной функции на отрезке, можно назвать наибольшее и наименьшее значение линейной функции. В случаеa) y=−2x+1,x∈[−3;2] имеем, что yнаиб=7 и yнаим=−3,b) y=−2x+1,x∈(−3;2) имеем, что ни наибольшего и ни наименьшего значений линейной функции нет, так как оба конца отрезка, в которых как раз и достигались наибольшее и наименьшее значения, исключены из рассмотрения.В ходе построения графиков линейных функций, можно как бы «подниматься в горку» или «спускаться с горки», т.е. линейная функция или возрастает или убывает.Если k>0, то линейная функция y=kx+m возрастает;если k<0, то линейная функция y=kx+m убывает.
По описанию можно определить названия населённых пунктов соответствующие заданным номерам (Задание 1: см. рисунок 1).
Для решения заданий рассмотрим рисунок 2.
Задание 2: Найдите расстояние от Николаево до Зябликово. От деревни Старая до села Николаево 15 км (15 клеток) и от деревни Зябликово до деревни Старая 8 км (8 клеток).
Так как по условию поворота у деревни Старая, то есть ∠213 прямой, то верна теорема Пифагора и расстояние (обозначим через d):
d²(Зябликово-Николаево) = d²(Зябликово-Старая)+ d²(Старая-Николаево) = (8 км)²+(15 км)² = 289 км² = (17 км)²
или d(Зябликово-Николаево) = 17 км.
Задание 3: Сколько километров проедут Гриша с дедушкой, если они в Зябликово свернут на тропинку, идущую мимо пруда?
От деревни Осиновка до деревни Зябликово 12 км (12 клеток), а от деревни Зябликово до села Николаево 17 км (см. задание 2). Тогда
d(Осиновка-Зябликово-Николаево) = d(Осиновка-Зябликово) + d(Зябликово-Николаево) = 12 км + 17 км = 29 км.
Задание 4: Сколько времени затратят на дорогу Гриша с дедушкой, если поедут по прямой лесной дороге?
Гриша с дедушкой едут по лесной дороге со скоростью 10 км/час. Если Гриша с дедушкой поедут по прямой лесной дороге, то пройдут расстояние d(Осиновка-Николаево).
Определим это расстояние: от деревни Старая до села Николаево 15 км (15 клеток) и от деревни Осиновка до деревни Старая 20 км (20 клеток), то теореме Пифагора
d²(Осиновка-Николаево) = d²(Осиновка-Старая)+ d²(Старая-Николаево) = (15 км)²+(20 км)² = 225 км² + 400 км² = 625 км² = (25 км)²
или d(Осиновка-Николаево) = 25 км.
Из формулы зависимости расстояния S (мы обозначили расстояние через d) от скорости и времени S = v • t получим
t = S / v = d(Осиновка-Николаево) / v = 25 км/ (10 км/час) = 2,5 часа = 2 часа 30 минут.