М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Yoidzokumi
Yoidzokumi
21.07.2022 21:37 •  Алгебра

В викторине участвуют 6 команд. Все команды разной силы, и в каждой встрече выигрывает та команда, которая сильнее. В первом раунде встречаются две случайно выбранные команды. Ничья невозможна. Проигравшая команда выбывает из викторины, а победившая команда играет со следующим случайно выбранным соперником. Известно, что в первых трёх играх победила команда А. Какова вероятность того, что эта команда выиграет четвёртый раунд?

👇
Ответ:
Vova50915091
Vova50915091
21.07.2022

Пусть в викторине участвовали команды А, В, С, D, E, F, причем команды В, С, D проиграли в первых трех раундах команде А.

Тогда, к четвертому раунду в игре остались три команды: А, E, F.

Рассмотрим как они могут располагаться друг относительно друга в зависимости от своей силы (на первом месте запишем сильнейшую команду, на втором - среднюю по силе, на третьем - слабейшую). Это ситуации: AEF, AFE, EAF, EFA, FAE, FEA.

С вероятностью \dfrac{1}{2} соперником команды А в четвертом раунде будет команда Е. Тогда, 3 из 6 перечисленных ситуаций окажутся благоприятными. Это ситуации: AEF, AFE, FAE - в них команда А сильнее команды Е.

Значит, вероятность того, что команда А в четвертом раунде будет играть с командой Е и выиграет у нее равна:

P(E)=\dfrac{1}{2} \cdot\dfrac{3}{6}=\dfrac{1}{2} \cdot\dfrac{1}{2}=\dfrac{1}{4}

Аналогично, с вероятностью \dfrac{1}{2} соперником команды А в четвертом раунде будет команда F. Также, 3 из 6 ситуаций окажутся благоприятными: AEF, AFE, EAF - в них команда А сильнее команды F.

Значит, вероятность того, что команда А в четвертом раунде будет играть с командой F и выиграет у нее равна:

P(F)=\dfrac{1}{2} \cdot\dfrac{3}{6}=\dfrac{1}{2} \cdot\dfrac{1}{2}=\dfrac{1}{4}

Тогда, вероятность того, что команда А выиграет в четвертом раунде равна:

p=P(E)+P(F)=\dfrac{1}{4} +\dfrac{1}{4} =\dfrac{1}{2}

ответ: 1/2

4,4(67 оценок)
Ответ:
Taya200401
Taya200401
21.07.2022
Чтобы ответить на данный вопрос, нужно вначале определить вероятности победы команды А в каждом из первых трех раундов.

В первом раунде команда А играет со случайно выбранной командой. Поскольку все команды разной силы и побеждает сильнейшая, вероятность победы команды А в первом раунде составляет 1/5 (5 команд - это 4 возможных соперника для команды А, так как одна команда уже выбыла). Аналогично, в каждой из следующих двух игр вероятность победы команды А также будет 1/5.

Теперь можно рассмотреть вероятности победы команды А в каждом из трёх раундов подряд. Поскольку события независимы, вероятность победы команды А в первых трёх раундах будет равна произведению вероятностей победы в каждом раунде:

P(победа в первых трех раундах) = (1/5) * (1/5) * (1/5) = 1/125

Таким образом, вероятность того, что команда А выиграет четвёртый раунд, при условии, что она уже победила в первых трёх раундах, равна 1/5.

Обоснование: Наш ответ основан на предположении, что вероятность победы команды А не зависит от результатов предыдущих игр. Это предположение справедливо, поскольку в условии задачи не указано, что команда А стала сильнее или слабее после каждой победы. Если бы у нас было больше информации о сильных и слабых командах, мы могли бы изменить нашу оценку вероятности.
4,8(81 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ