|bx + 3| = 5x
При x ≥ 0 возводим обе части уравнения в квадрат.
|bx + 3|² = (5x)² ⇔ (bx + 3)² = (5x)² ⇒ (bx + 3)² - (5x)² = 0
(bx + 3 - 5x)(bx + 3 + 5x) = 0
bx + 3 - 5x = 0 ⇒ x(b - 5) = -3
Если b = 5, то уравнение, то 0x = -3, уравнение решений не имеет, если b ≠ 5 и то уравнение имеет корень x = 3/(5-b) и причём имеет корень, когда 3/(5-b) ≥ 0 откуда b<5, а при b > 5 не имеет корень
bx + 3 + 5x = 0 ⇒ x(b + 5) = -3
Если b = -5, то -10x = -3 ⇒ x=3/10. Если b ≠ -5, то уравнение имеет корень x = -3/(b+5), причём имеет корень, когда -3/(b+5)≥0, то есть, при b<-5, а при b > -5 корень не имеет.
при b ≥ 5 уравнение корней не имеетпри -5 ≤ b < 5 уравнение имеет один кореньпри b < -5 уравнение имеет два различных корня.если решить как ваше уравнение то корень будет иррациональным так как по схеме горнера уже после 3 проверки идут корни очень плохие!
(5x)^(2x+1) = 5^(2x+1)*x^(2x+1) = 5*5^(2x)*x^(2x+1)
5*5^(2x)*x^(2x+1) + 5^(2x) = 5^(2x)*(5*x^(2x+1) + 1) = 750 = 6*5^3
Варианты:
{ 5^(2x) = 5^3, x = 3/2
{ 5*x^(2x+1) + 1 = 6, 5*x^(2x+1) = 5, x^(2x+1) = 1, (3/2)^4 = 1 - не подходит
{ 5^(2x) = 5^2, x = 1
{ 5*x^(2x+1) + 1 = 30, 5*x^(2x+1) = 29 - не подходит
{ 5^(2x) = 5, x = 1/2
{ 5*x^(2x+1) + 1 = 150, 5*x^(2x+1) = 149 - не подходит
{ 5^(2x) = 1, x = 0
{ 5*x^(2x+1) + 1 = 750, 5*x^(2x+1) = 749 - не подходит
может ошибка у вас там так как
(5)^(2x+1) +5^2x = 750
5^2x*5+5^2x=750
5^2x=t
6t=750
t=125
2x=3
x=3/2
теперь ставим
3/2^2+3/2 = 15/4
Область определения (или значения) функции - это ряд тех аргументов, при которых функция имеет смысл. Существует три случая в области определения определения функции:
1) если в правой части функции есть дробь, то знаменатель дроби не должен равняться нулю, в противном случае функция не имеет смысла : у=1/х - x \neq 0(в данном случае область определения функции от - бесконечности до +бесконечности, кроме нуля); y= 5/(x^2-1) - x^2-1 /neq 0 x^2 /neq 1 x /neq 1(область определения данной функции включает значения от - бесконечности до + бесконечности, исключая 1).
2) если функция имеет корень чётной степени, то значение под корнем не должно быть меньше нуля: y=корень из(х) - х>0, значит область определения функции составляет (0;+\infty).
3) если функция имеет и корень и дробь, тогда выражение под корнем не должно быть отрицательным, а выражение в знаменателе не должно равняться нулю: y=корень из(1/х+1), занчит, 1/х+1 > 0 х>-1 и х+1 /neq 0 x /neq -1(область определения этой функции содержит значения от -1 до плюс бесконечности).
У фукции y=x^2-4x+6 нет ни корней, ни дробей, поэтому область определения этой функции включает все значения числовой прямой.;)
(см. объяснение)
Объяснение:
Самый верный решить любой параметр - это постараться построить его в координатах (b; x).
Попробуем применить этот прием здесь.
Сначала заметим, что при
равенство неверно при любом значении параметра. Тогда на протяжении решения при необходимости будем спокойно делить на
.
Раскроем
:
Видим гиперболу в координатах (b; x).
Построим ее и просчитаем знаки в областях, которые она образует, подставляя координаты соответствующих точек в
.
Тогда при
:
Строим фрагмент этого графика в определенных выше областях.
При
:
Тоже строим фрагмент этого графика в определенных выше областях.
Получим график уравнения:
(см. прикрепленный файл)
Итого:
ПриЗадание выполнено!