решить !! решить уравнение cosx=1/(1-tgx). Найти корни из промежутка (-2п; 2п) и выбрать не более трех ответов: 1) 2п 2) -3п/2 3) -п/2 4) -2п 5) -п 6) 0
ΔАВС. Если две биссектрисы пересекаются в точке К, то и третья биссектриса бдет проходить через эту точку, так как биссектрисы треугольника пересекаются в одной точке. ⇒ КС - биссектриса. Чтобы было удобно читать текст, обозначим ∠А=2α, ∠В=2β , ∠С=2ω ⇒ ∠ВАК=∠САК=α , ∠АВК=∠СВК=β , ∠ВСК=∠АСК=ω . ΔАВК: α+β+∠АКВ=α+β+146°=180° ⇒ α+β=180°-146°=34° ΔВКС: α+ω+∠ВКС=180° } ΔАКС: β+ω+∠АКС=180° } Сложим два последних равенства: α+β+2ω+∠ВКС+∠АКС=360° 34°+2ω=360°-(∠ВКС+∠АКС) 2ω=326°-(∠ВКС+∠АКС) ∠АКВ+∠ВКС+∠АКС=360° ⇒ ∠ВКС+∠АКС=360°-∠АКВ=360°-146°=214° 2ω=326°-214°=112° ω=56° ∠ВСК=56°
Треугольник ЕСF будет подобен треугольнику АЕD по двум углам (угол CEF равен углу AED, как вертикальные углы, угол ADE будет равен углу FCE, как накрест лежащие углы, образованные при пересечении двух параллельных прямых BC и AD секущей CD). В подобных треугольниках стороны пропорциональны, значит СF/AD = EC/ED. AB=CD=8 (как противоположные стороны параллелограмма). СD= EC+ED, а отсюда ED = CD-EC. Пусть EC=х, тогда CF/AD = х/8-х, 2/5=х/8-х, 5х=2(8-х), 7х=16, х= 2 целых 2/7. Значит, EC = 2 целых 2/7. Тогда ED=CD-EC=8-2 целых 2/7= 5 целых 5/7
Дано уравнение cosx=1/(1- tgx).
сosx*(1 - tgx) = 1.
сosx - сosx*tgx = 1.
Заменим tgx = sinx/cosx,
сosx - сosx*( sinx/cosx) = 1.
cosx – sinx = 1.
Заменим sinx = √(1 – cos²x)
cosx - √(1 – cos²x) = 1.
Перенесём корень вправо, а 1 влево и возведём обе части в квадрат.
cos²x – 2cosx + 1 = 1 – cos²x,
2 cos²x – 2cosx = 0,
2cosx(cosx - 1) = 0.
Имеем 2 решения: cosx = 0 и cosx = 1.
Находим значения х:
x = arc cos 0 отбрасываем, так как при этом функция тангенса не имеет определения.
x = arc cos(1) = 2πn, n ∈ Z.
ответ: в заданном промежутке имеется 3 корня уравнения
-2π, 0, 2π.
.