1) Боря берет конфеты по арифметической прогрессии: 1, 3, 5, ... a1(1) = 1; d1 = 2 Миша - тоже по арифметической прогрессии a2(1) = 2; d2 = 2 Всего Боря взял S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60 7 < n < 8 Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13. И у Бори получилось S1(7) = 7^2 = 49 конфет. Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11. Миша последний раз взял 14. Это тоже 7-ой раз. Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56 Всего конфет было 60 + 56 = 116
2) 231 = 3*7*11 На каждом этаже квартир больше 2, но меньше 7, то есть 3. Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира. Квартира номер 42 - последняя во 2 подъезде. Квартир с номерами больше 42 во 2 подъезде нет. Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры. Квартира номер 42 - последняя на 3 этаже.
В нашей группе 3 взрослых (два родителя и учитель), значит, им на билеты нужно потратить: 200*3=600 (руб). Еще мы знаем, что для группы школьников из 10 человек мы можем купить билет за 800 р. У нас школьников 16, значит, 10 поедут по билету за 800 руб. Затем, найдем тех, кому за билеты придется платить отдельно. 16-10=6 (уч.)-те, кому придется брать отдельный школьный билет => 6*100=600 (руб). Сложим те стоимости, что у нас получились: 600+800+600=2000 (руб) Если бы нам была нужна максимальная сумма, то мы бы всем ученикам из 16 купили билеты по 100 руб. ответ: минимальная сумма в рублях, которую должна заплатить группа, равна 2000 руб.
Объяснение:
7tg^2 x + 3tg x + 2cos^2 x - 7cos x + 1 = 0
Можно применить универсальную тригонометрическую подстановку.
t = tg(x/2), тогда , . Подставляем:
Приводим к общему знаменателю (1-t^2)^2*(1+t^2)^2:
Избавляемся от дробей:
28t^2(1+2t^2+t^4) + 6(t-t^3)(1+2t^2+t^4) + 2(1-2t^2+t^4)(1-2t^2+t^4) -
- 7(1+t^2)(1-3t^2+3t^4-t^6) + (1-2t^2+t^4)(1+2t^2+t^4) = 0
Раскрываем скобки:
28t^2 + 56t^4 + 28t^6 + 6t - 6t^3 + 12t^3 - 12t^5 + 6t^5 - 6t^7 + 2 - 4t^2 + 2t^4 -
- 4t^2 + 8t^4 - 4t^6 + 2t^4 - 4t^6 + 2t^8 - 7 - 7t^2 + 21t^2 + 21t^4 - 21t^4 - 21t^6
+ 7t^6 + 7t^8 + 1 - 2t^2 + t^4 + 2t^2 - 4t^4 + 2t^6 + t^4 - 2t^6 + t^8 = 0
Приводим подобные:
t^8*(2+7+1) - 6t^7 + t^6*(28-4-4-21+7+2-2) - 6t^5 + t^4*(56+2+8+2+21-21+1-4+1)
+ 6t^3 + t^2*(28-4-4-7+21-2+2) + 6t + (2-7+1) = 0
10t^8 - 6t^7 + 6t^6 - 6t^5 + 66t^4 + 6t^3 + 34t^2 + 6t - 4 = 0
Делим все на 2
5t^8 - 3t^7 + 3t^6 - 3t^5 + 33t^4 + 3t^3 + 17t^2 + 3t - 2 = 0
Это уравнение имеет 2 иррациональных корня:
t1 = tg(x/2) ≈ -0,387
x/2 ≈ -arctg(0,387) + П*k
x1 ≈ -2arctg(0,387) + 2П*k, k ∈ Z
t2 = tg(x/2) ≈ 0,25
x/2 ≈ arctg(0,25) + П*k
x2 ≈ 2arctg(0,25) + 2П*k, k ∈ Z
В общем, у меня такое чувство, что в задании опечатка.
Слишком сложно получилось.
Ну, или это задание из математической спецшколы.