Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
==========
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.
х = 18, у = -6.
Объяснение:
Так как графики функций пересекаются, то в точке их пересечения координаты одного графика равны координатам другого.
1) Приравняем у1 и у2:
-х/3 = 12 - х, откуда находим координату х:
-х = 36 - 3х,
2х = 36,
х = 18.
2) По у1 находим координату у при х = 18:
у 1 = - 18/3 = - 6.
3) По у2 делаем проверку (при х = 18 он должен быть = - 6):
у 2 = 12 - 18 = - 6.
Совпало с п.3 - значит, расчеты координат точки пересечения выполнены верно.
ответ: координаты точки пересечения:
х = 18, у = -6.