Формула квадратичной функции — формула вида y=ax²+bх+c Пересечение графика с осью абсцисс (т.е. с горизонтальной) — это корни уравнения ax²+bx+c=0 Корни уравнения в данном случае — это 5 и (-1) По теореме Виета в уравнении ax²+bx+c=0: с=5*(-1)=-5, -b=5-1=4, т.е. b=-4 Экстремум квадратичной функции — это вершина параболы. Вершина параболы находится по формуле ув.=(4ac-b²)/(4a), где ув. — координата вершины по игрику. Нам известны yв., в и с. Cоставим уравнение. -9=(4*a*(-5)-16)/(4a) … a=1 ответ: y=x²-4x-5.
Пусть первая цифра равна х, последняя - y. Тогда по условию 100x+y=(10x+y)k, где x,y,k - однозначные числа, причем x,k не равны 0. Перепишем это уравнение как 10x(10-k)=y(k-1). Такое возможно, только если y(k-1) делится на 10, а это возможно в следующих 4 случаях: 1) y=0, в этом случае k=10, и x - любое число от 1 до 9. Т.е. исходные числа 100, 200, 300, 400, 500, 600, 700, 800, 900. 2) k=1, тогда x=0, чего быть не может. 3) y=5, тогда k=10-9/(2x+1), т.е. к - целое только если x=1 или x=4. Это дает числа 105 и 405. 4) k-1=5, т.е. k=6, отсюда 40x=5y, т.е. y=8x, и значит x=1, y=8, что дает 108. Итак, ответ: 100, 200, 300, 400, 500, 600, 700, 800, 900, 105, 108, 405.
решим полученную систему методом сложения