выражение: 0.6*(4+x)-0.5*(x-3)=2.6ответ: 1.3+0.1*x=0 х=-13решаем по действиям: 1. 0.6*(4+x)=2.4+0.6*x 0.6*(4+x)=0.6*4+0.6*x 1.1. 0.6*4=2.4 x0.6 _ _4_ _ 2.4 2. 0.5*(x-3)=0.5*x-1.5 0.5*(x-3)=0.5*x-0.5*3 2.1. 0.5*3=1.5 x0.5 _ _3_ _ 1.5 3. 2.4+0.6*x-(0.5*x-1.5)=2.4+0.6*x-0.5*x+1.54. 0.6*x-0.5*x=0.1*x5. 2.4+1.5=3.9 +2.4 3.96. 3.9-2.6=1.3 -3.9 1.3решаем по шагам: 1. 2.4+0.6*x-0.5*(x-3)-2.6=0 1.1. 0.6*(4+x)=2.4+0.6*x 0.6*(4+x)=0.6*4+0.6*x 1.1.1. 0.6*4=2.4 x0.6 _ _4_ _ 2.4 2. 2.4+0.6*x-(0.5*x-1.5)-2.6=0 2.1. 0.5*(x-3)=0.5*x-1.5 0.5*(x-3)=0.5*x-0.5*3 2.1.1. 0.5*3=1.5 x0.5 _ _3_ _ 1.5 3. 2.4+0.6*x-0.5*x+1.5-2.6=0 3.1. 2.4+0.6*x-(0.5*x-1.5)=2.4+0.6*x-0.5*x+1.54. 2.4+0.1*x+1.5-2.6=0 4.1. 0.6*x-0.5*x=0.1*x5. 3.9+0.1*x-2.6=0 5.1. 2.4+1.5=3.9 +2.4 3.96. 1.3+0.1*x=0 6.1. 3.9-2.6=1.3 -3.9 1.3решаем уравнение 1.3+0.1*x=0: тестовая функция, правильность не гарантируетсярешаем относительно x: x=-1.3/0.1=-13.
ответ: -13
2) перепишем функцию в виде y=-3x-1. Эта функция убывает на всей числовой оси, поэтому Ymax=y(-2)=5 и Ymin=y(0)=-1.
3) Функция убывает на промежутке [π/3;π/2) и возрастает на промежутке (π/2;5*π/6]. При этом y(π/3)=1-√3<y(5*π/6)=0, поэтому Ymax=y(5*π/6)=0, а Ymin=y(π/2)=-1
4) На промежутке [0;π/2] функция y=1+sin(x), а вместе с ней и функция y1=√(1+sin(x)) возрастают. Поэтому Ymin=y1(0)=1, а Ymax=y1(π/2)=√(1+1)=√2