Сечением будет равнобедренная трапеция, т.к. основания призмы лежат в параллельных плоскостях, то секущая плоскость их будет пересекать по параллельным прямым.
Пусть К и М середины рёбер АС и ВС, тогда МК средняя линия, по свойству она параллельна третьей стороне АВ и равна её половине - 4 см (стороны основания равны по 8см)
Секущая плоскость проходит через точку А1 и параллельна МК, т.е. совпадает с А1В1 (МК II АВ II А1В1). А1В1МК - трапеция с основаниями А1В1=8см и МК=4см
Боковые стороны равны из равенства прямоугольных треугольников АА1К и ВВ1М (по двум катетам). А1К и В1М - гипотенузы этих треугольников. Их находим по теореме Пифагора √3²+4²=√9+16=√25=5см.
Р=4+8+2·5=22см
ответ: АС≈45,4 см, МС=5√37
Объяснение:
Не рассматривая отрезок АС, который проведен в середине ΔАВС, найдем сторону АС ΔАВС и проекцию МС. Рассмотрим ΔАВМ. В нем АВ - гипотенуза, а ВМ и АМ катеты. Найдем ВМ по теореме Пифагора:
ВМ²=АВ²-АМ²=30²-15²=900-225=675; ВМ=√675=√(25×9×3)=5×3√3=15√3см
Рассмотрим ΔВСМ. В нем ВС - гипотенуза, а ВМ и МС - катеты. Найдем МС по теореме Пифагора:
МС²=ВС²-ВМ²=40²-(√675)²=1600-675=925; МС=√925=√(25×37)=5√37
АС=АМ+МС=15+5√37.
Можно так и оставить, поскольку целые числа и числа с корнями не складываются, но если нужно вычислить, то найдем приблизительное значение корня, округлив до сотых: √37≈6,08, подставим его вместо знака корня:
АС=15+5×6,08=15+30,4=45,4см
Треугольники ABE и ACE равны, так как: 1) АЕ - общая, 2) угол АЕВ=углуАЕС (условие), 3) угол ВАЕ=углу САЕ (АЕ - биссектриса), т.е треугольники равны по стороне и двум прилежащим углам. значит, равны стороны, лежащие против равных углов, т.е. ВЕ=СЕ