Найдем последний 30-й член прогрессии по формуле an=a1+d(n-1):
а30=16+2*29=84
Т.к. максимальный член больше 70, то в этой прогрессии встретим числа 38 и 70, но не встретим 53, т.к. разность прогрессии - четное число и первый член прогрессии - четное число.
Найдем, какими по порядку членами являются числа 38 и 70 (из формул выше).
1) площадь 1-го участка х, а второго х-5.урожайность с 1-го участка 450 / х, а со 2-го 400 / (х-5).известно что на 2-м урожайность выше на 2 т.имеем равенство(450 / х) = (400 / (х-5)) - 2. после преобразований х^2 + 20*х -1125 = 0. корни уравнения х1 = 25, а х2 = -45.второй не подходит. тогда площадь 1-го участка 25 га, а второго 20 га. урожайность 1-го 450 / 25 = 18 т/га, а 2-го 400 / 20 = 20 т/га.2) х - знаменатель, х+11 - числитель. получаем (х+11) / х = 3*(х+16) / (х+12). после преобразований2*х^2 +25*x -132 = 0. откуда х = 4. исходная дробь 15 / 4, новая 20 / 16 или 5 / 4.удачи и !
d=18-16=2
Найдем последний 30-й член прогрессии по формуле an=a1+d(n-1):
а30=16+2*29=84
Т.к. максимальный член больше 70, то в этой прогрессии встретим числа 38 и 70, но не встретим 53, т.к. разность прогрессии - четное число и первый член прогрессии - четное число.
Найдем, какими по порядку членами являются числа 38 и 70 (из формул выше).
16+2(n-1)=38
2n-2=38-16=22
2n=22+2=24
n=12, т.е. число 38 - 12-й член прогрессии
16+2(n-1)=70
2n-2=70-16=54
2n=54+2=56
n=28, т.е. число 70 - 28-й член прогрессии