М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
петро27
петро27
28.01.2023 20:21 •  Алгебра

6×-19=-2×-15;
0,2×+0,34=0,6×2,6; -3(×-4)=5×-12

👇
Ответ:
Kira3998
Kira3998
28.01.2023

Объяснение:

6х - 19 = -2х - 15

6х + 2х = -15 + 19

8х = 4

х = 4 : 8

х = 4/8

х = 1/2

0,2х + 0,34 = 0,6 * 2,6

0,2х + 0,34 = 1,56

0,2х = 1,56 - 0,34

0,2х = 1,22

х = 1,22 : 0,2

х = 6,1

-3(х - 4) = 5х - 12

-3х + 12 = 5х - 12

-3х - 5х = -12 - 12

-8х = -24

х = -24 : (-8)

х = 3

4,6(95 оценок)
Ответ:
yernur2207
yernur2207
28.01.2023
6x-19=-2x-15
6x+2x=19-15
8x=4
x=1/2

0,2x+0,34=0,6*2,6
0,2x=-0,34*1,56
0,2x=-0,5304
x=-2,652

-3(x-4)=5x-12
-3x+12=5x-12
-3x-5x=-12-12
-8x=-24
x=3
4,7(44 оценок)
Открыть все ответы
Ответ:
Nyrkoff
Nyrkoff
28.01.2023
1) y=-2x²-3x-3
Функция определена на всей числовой прямой
Найдём производную и приравняем её к 0:
y'=(-2x²-3x-3)'=-4x-3
-4x-3=0
-4x=3
x=-3/4
Нашли критическую точку, теперь надо определить это точка максимума или минимума функции. На числовой прямой откладываем точку -3/4 и находим значения производной функции перед этой точкой, например в точке -2:
f'(-2)=-4*(-2)-3=5
Значит производная положительная на интервале (-∞;-3/4)
Выбираем точку 0:
f'(0)=-4*0-3=-3
Значит производная отрицательная на интервале (-3/4;∞)
То есть производная меняет знак с плюса на минус значит функция достигает максимума в данной точке: x=-3/4 точка максимума.
-2*(-3/4)²-3(-3\4)-3=-15/8

2) y=x²-4x-21
y'=(x²-4x-21)'=2x-4
2x-4=0
2x=4
x=2
Подставляем 0 и находим значение производной в этой точке
f'(0)=2*0-4=-4  f'(x)<0
Подставляем 3
f'(3)=2*3-4=2  f'(x)>0
При переходе через точку 2 производная меняет знак с "-" на "+" значит функция в этой точке достигает минимума.
2²-4*2-21=4-8-21=-25
4,6(31 оценок)
Ответ:
KAY111
KAY111
28.01.2023
1) y=-2x²-3x-3
Функция определена на всей числовой прямой
Найдём производную и приравняем её к 0:
y'=(-2x²-3x-3)'=-4x-3
-4x-3=0
-4x=3
x=-3/4
Нашли критическую точку, теперь надо определить это точка максимума или минимума функции. На числовой прямой откладываем точку -3/4 и находим значения производной функции перед этой точкой, например в точке -2:
f'(-2)=-4*(-2)-3=5
Значит производная положительная на интервале (-∞;-3/4)
Выбираем точку 0:
f'(0)=-4*0-3=-3
Значит производная отрицательная на интервале (-3/4;∞)
То есть производная меняет знак с плюса на минус значит функция достигает максимума в данной точке: x=-3/4 точка максимума.
-2*(-3/4)²-3(-3\4)-3=-15/8

2) y=x²-4x-21
y'=(x²-4x-21)'=2x-4
2x-4=0
2x=4
x=2
Подставляем 0 и находим значение производной в этой точке
f'(0)=2*0-4=-4  f'(x)<0
Подставляем 3
f'(3)=2*3-4=2  f'(x)>0
При переходе через точку 2 производная меняет знак с "-" на "+" значит функция в этой точке достигает минимума.
2²-4*2-21=4-8-21=-25
4,8(69 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ