М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DAYDEMON
DAYDEMON
27.09.2021 18:43 •  Алгебра

2(2x+3)=8(1+x)-5(x-2)2x+x=3*5

👇
Ответ:
Doalipa
Doalipa
27.09.2021

ответ:правильно?


2(2x+3)=8(1+x)-5(x-2)2x+x=3*5​
4,8(37 оценок)
Открыть все ответы
Ответ:
Zemoten
Zemoten
27.09.2021

Нельзя! 
Доказательство: 
Число 1 не может быть поставлено в середину ребра куба, т.к. полусумма ни одной пары оставшихся чисел не может быть равна 1. Наименьшее возможное значение такой полусуммы (2+4):2=3. 
Следовательно, число 1 должно располагаться в вершине куба. Из этого вытекает, что в вершинах куба могут располагаться только нечетные числа (По условию сумма чисел, стоящих на концах ребра, должна делиться на 2 без остатка, т.е. быть четной. А сумма двух чисел, одно из которых нечетное, может быть четной только при условии, что и второе число тоже нечетное). 
Из этого следует, что число 20 будет располагаться в середине какого-либо ребра куба. Очевидно, что число 20 не может быть полусуммой каких-либо двух чисел, каждое из которых меньше 20. 
Вывод: расположить числа указанным в задаче невозможно.

4,7(68 оценок)
Ответ:
denvolk00
denvolk00
27.09.2021

Определить промежутки монотонности функции, не используя производную функции.

y = (x² - x - 20)² - 18

=================================

Область определения функции  D (y) = R

y = (x² - x - 20)² - 18

Квадратичная функция в квадратичной функции

y = f(z);             z = g(x)

y = z^2-18;\ \ \ \ z=x^2-x-20

Чтобы найти промежутки монотонности квадратичной функции, нужно найти абсциссу вершины параболы.

z=x^2-x-20;\ \ \ x_0=-\dfrac b{2a}=-\dfrac {-1}2=0,5     -  координата вершины

y = z^2-18;       z = 0   -  координата вершины параболы

x^2-x-20=0\\(x-5)(x+4)=0

x₁ = -4;   x₂ = 5   - координаты вершин параболы

Таким образом, есть три точки, которые определяют промежутки монотонности функции   y = (x² - x - 20)² - 18.

x₁ = -4;   x₀ = 0,5;   x₂ = 5

x ∈ (-∞; -4]   -  функция убывает  :   y(-5) > y(-4)

x ∈ [-4; 0,5]   -  функция возрастает :   y(-4) < y(0)

x ∈ [0,5; 5]   -  функция убывает :   y(1) > y(2)

x ∈ [5; +∞)   -  функция возрастает :   y(5) < y(6)

4,7(51 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ