Для числа 18 ответ: да, можно.
Я рассуждал так:
если меняется только одна цифра, значит, меняется только один разряд числа: единицы, десятки, сотни и т.д.
• Изменяя только единицы, деление на 18 снова не получится. Потому что от одного числа, которое делится на 18, до другого должна быть разница хотя бы в эти самые 18.
• Изменяя десятки, мы делаем предположение, что какое-либо круглое двузначное число делится на 18, и это так:
90 : 18 = 5.
Таким образом, если найдётся число, у которого в разряде десятков стоит 0, и оно делится на 18, достаточно будет заменить 0 на 9, чтобы получить новое число, делящееся на 18.
Пример: 108 и 198.
Для числа 19 ответ: нет, нельзя.
Рассуждения аналогичные, только в десятках умножение 19 ни на какое число не даст круглого двузначного числа. То же самое и с сотнями, и с тысячами и т.п., ведь из девятки на конце может получиться нуль только умножением на 10, или кратное ему, а это нам не подходит, т.к. числа 190 и подобные ему будут изменять не один разряд числа, а несколько. Так что только одну цифру изменить никак не получится.
5y^2 + 13y - 6 = 6y^2 + 7y + 2
5y^2 - 6y^2 + 13y - 7y - 6 - 2 = 0
- y^2 + 6y - 8 = 0
y^2 - 6y + 8 = 0
D = b^2 - 4ac= 36 - 32 = 4 = 2^2
y1 = ( 6 + 2)/ 2 = 4
y2 = ( 6 - 2) / 2 = 2
Проверяем подходят ли оба корня:
y =4 y = 2
(20 - 2)/(8 +1 )=( 12 + 2)/ 7 (10 - 2)/(4 + 1) = (6 + 2)/5
18/9 = 14/7 8/ 5 = 8/5 - верно.
2 = 2 - верно.
Находим среднее арифметическое корней:
(4 + 2) / 2 = 3