В решении.
Объяснение:
1.
Постройте график функции у = х². Найдите наибольшее и наименьшее значение на отрезке [-1; 4].
Квадратичная функция, график - классическая парабола с вершиной в начале координат, ветви направлены вверх.
Придать значения х, подставить в уравнение, вычислить значения у, записать в таблицу.
Таблица:
х -4 -3 -2 -1 0 1 2 3 4
у 16 9 4 1 0 1 4 9 16
На отрезке [-1; 4] у наим. = 0; у наиб. = 16.
2. Упростите:
(4ас³в)² : (-2с²в)³ =
= 16а²с⁶в²/4с⁶в³ =
= 16/4(а²с⁶⁻⁶в²⁻³) =
= 4а²/в.
3. Решите систему уравнений графически.
у = 2х
у = х + 2
Построить графики. Графики линейной функции, прямые линии. Придать значения х, подставить в уравнение, вычислить у, записать в таблицу. Для построения прямой достаточно двух точек, для точности построения определить три.
у = 2х у = х + 2
Таблицы:
х -1 0 1 х -1 0 1
у -2 0 2 у 1 2 3
Согласно графика, координаты точки пересечения прямых (2; 4).
Решение системы уравнений (2; 4).
Пусть сторона квадрата х см, тогда длина прямоугольника (3х) см, а ширина прямоугольника - (х - 5) см.
Т.к. площадь квадрата находят по формуле S = а², где а - сторона квадрата, о площадь данного квадрата равна (х²) см².
А т.к площадь прямоугольника находят по формуле S = a · b, где a и b - длина и ширина прямоугольника, то площадь данного прямоугольника будет равна S = 3х · (х - 5) = 3х² - 15х (см²).
Т.к. площадь квадрата на 50 см² меньше площади прямоугольника, то составим и решим уравнение:
3x² - 15х = x² + 50,
3x² - x² - 15x - 50 = 0,
2x² - 15x - 50 = 0,
D = (-15)² - 4 · 2 · (-50) = 225 + 400 = 625 ; √625 = 25,
x₁ = (15 + 25)/(2 · 2) = 40/4 = 10,
x₂ = (15 - 25)/(2 · 2) = -10·/4 = -2,5 - не подходит по условию задачи.
Значит, сторона квадрата равна 10 см.
ответ: 10 см.