г)х^2-16х+63=0 По теореме Виета: х1+х2=-(-16)=16 х1×х2=63 х1=7 х2=9
2) Решите задачу . Периметр прямоугольника равен 20см. Найдите его стороны, если известно ,что площадь прямоугольника равна 24см^2 длина-х, см ширина-у, см
по данной задаче составим систему уравнений:
P=2×(х+у)- формула периметра. S=x×у-формула площади. {2(х+у)=20|÷2 {ху=24
{х+у=10 {ху=24
х=(10-у)
у(10-у)=24 10у-у²=24 у²-10у+24=0 по теореме Виета: у1+у2=-(-10) у1×у2=24
Вынесем икс за скобки: Произведение бращается в нуль, когда: Один корень найден: х = 0. Для второго уравнения попробуем подобрать целые корни, которые м.б. делителями свободного члена. Такой корень один: х = -1. Попробуем разложить на множители второе уравнение. Один множитель у нас есть - это (х + 1). Другой множитель получим, разделив многочлен (x³+x+2) на (х+1). В результате получится: (x²-x+2). Т.е. имеем дальнейшее разложение на множители: Уравнение x²-x+2=0 не имеет действительных корней. Действительно, дискриминант отрицательный.
В итоге у нас есть два действительных корня: x = 0 x = - 1
11,2+6,4>7,8+(-9,5)
17,6 > -1,7
4/5+9/10<5/6+11/12
8/10+9/10<10/12+11/12
17/10<21/12