Функция
1) Очень дико видеть "область определения", потому что это то, что задаёт математик. Область существования вещественных прообразов называть "область определения" — дичь! Так вот, область существования аргумента здесь — всё множество действительных чисел ("вся числовая прямая").
2) Пересечение с осью аргументов означает равенство . То есть требуется решить уравнение
. Это алгебраическое уравнение второго порядка. Два его корня суть 6 и -2.
3) Чётность/нечётность относительно оси значений (x = 0)? Нет, не обладает свойствами ни чётности, ни нечётности.
4) Тут меня раза три остановили, когда я стал исследовать на экстремумы через производную. Если исследовать всё-таки через производные, то
Точки экстремума: 0[/tex]
Вторая производная: => выпуклость вверх для любого значения агрумента (прообраза) => точки экстремума — максимумы.
Функция монотонно возрастает при x < 1 и монотонно убывает при x > 1.
5) Точки экстремумов были найдены выше.
6) Рисунок 1 в аттаче.
7) Они хотят интеграл? Ого. Не, это только завтра.
ответ:![\boldsymbol {\sf g) \dfrac{3}{7} }](/tpl/images/4521/8208/3cf7b.png)
Объяснение:
Дробь можно представить в виде конечной только в том случае если в знаменателе есть число кратное только двум ; либо пяти ; либо сразу число одновременно кратное только 5 и 2 (то есть оно кратно 10 ) В остальных случаях если в знаменателе будут числа кратные простым 3 ; 7 ; 11 ; 13 и т.к.д то дробь будет бесконечно периодической Но перед этим важно сократить дробь чтобы числитель ; и знаменатель обязательно были взаимно простыми Перейдем к решению задачи :a) Как видно у дроби