3) Это арифметическая прогрессия с разностью –5. Продолжается так: 6,7; 6,2; 5,7; 5,2; 4,7; 4,2; 3,7; 3,2 ...
4) Первое число кратное трём, это тройка. Поэтому подходят либо второй, либо третий вариант. Четвёртый член должен быть равен 3*4=12, поэтоу правильный ответ — второй: 3; 12; 33.
5)
6)
7) Это арифметическая прогрессия.
8)
ответ: нет, не является, потому что должно быть натуральным числом.
9)
Наибольшее натуральное , удовлетворяющее этому неравенству, — это 16.
ответ: 16 членов.
10)
Второе решение не подходит, поскольку должно быть натуральным числом.
Нули подмодульных выражений: x = -5; 2 x - 2 - - + [-5][2]> x x + 5 - + +
1) x ∈ (-∞; -5] y = -x + 2 + x + 5 y = 7 2) x ∈ [-5; 2] y = -x + 2 - x - 5 y = -2x - 3 Функция y = -2x - 3 убывающая. Наименьшее значение будет принимать при наибольшем x из промежутка. y(2) = -2·2 - 3 = -4 - 3 = -7 3) x ∈ [2; +∞). y = x - 2 - x - 5 y = -7
Наименьшее из всех найденных значений функции будет равно -7.
1) Аналитический.
2) Рекуррентній.
3) Это арифметическая прогрессия с разностью –5. Продолжается так: 6,7; 6,2; 5,7; 5,2; 4,7; 4,2; 3,7; 3,2 ...
4) Первое число кратное трём, это тройка. Поэтому подходят либо второй, либо третий вариант. Четвёртый член должен быть равен 3*4=12, поэтоу правильный ответ — второй: 3; 12; 33.
5)
6)
7) Это арифметическая прогрессия.
8)
ответ: нет, не является, потому что
должно быть натуральным числом.
9)
Наибольшее натуральное
, удовлетворяющее этому неравенству, — это 16.
ответ: 16 членов.
10)
Второе решение не подходит, поскольку
должно быть натуральным числом.
ответ: