• Решение:
— Чтобы узнать, возрастает или убывает функция y=6-3x, нужно использовать вот такие правила:
• 1. Смотрим на то, что стоит перед функцией ( знак «+» или «-» ) .
• 2. Мы увидели, какой знак стоит перед функцией. Это знак «-». Теперь, переходим к следующему пункту нашего правила.
• 3. Теперь, чтобы нам легче узнать, возрастающая или убывающая эта функция, возьмём пример с возрастающей функцией и убывающей. Например: y=6x-2. В данном случае функция возрастающая, т.к. перед «x» подразумевается знак «+». А вот возьмём ещё один пример, только с убывающей функцией: -x+1. Перед «х» стоит знак «-», значит, функция убывающая
• 4. Ну, а теперь, по примеру, будем определять: возрастает или убывает функция y=6-3x .
• 5. y=6-3x. Мы видим, то что перед «х» стоит знак «-», значит, функция убывающая.
• ответ:
Функция y=6-3x убывает.
— Фу-у-ух, как же я это долго писала! Надеюсь, я Вам и остальным участникам! Удачи! :³
№1
Умножим первое ур-ние на 3, получим такую систему ур-ний
9х+3ау=36
9х-15у=36
вычтем второе из первого, получим
3ау+15у=0
или
3(а+5)у=0 делим на 3
(а+5)у=0
только два варианта решений:
1) а+5=0 а=-5 0*у=0 => у-любое - бесконечно множество решений
и х- тоже любое - тоже бесконечно множество решений
или
2) а+5≠0 у=0/(а+5) => у=0 - единственное решение
и х=4 - тоже единственное решение
значит, система всегда имеет решения (или одно или бесконечно много )
ответ: Г ) таких значений а не существует, при которых система не имеет решений - решения есть при любых а - или одно или бесконечно много
№2
2х-7у=6
8х-28у=24
разделим второе на 4, получим
2х-7у=6
2х-7у=6
получили фактически только одно единственное уравнение с двумя неизвестными
2х-7у=6
значения, например, у можно взять любое, тогда х вычисляется из уравнения
2х=6+7у
х=3+(7/2)у
ответ: Г ) у системы бесконечно много решений
0,25 · (-2)⁴ = 4
1) (-2)⁴ = (-2) · (-2) · (-2) · (-2) = 16
2) 0,25 · 16 = 4
ответ: 4.