1.
Тут легко выразить x из первого уравнения. Нужно лишь перенести 2y
x = -2y
Теперь подставляем это во второе
5(-2y) + y = -18
-9y = -18
y = 2
Помним, что x = -2y ===> x = -4
Для самопроверки можно подставить в первое, в других номерах делать не буду, но тебе советую (не конкретно в этих, а вообще)
-4 + 4 = 0 Все верно
x = -4; y = 2
2.
Здесь тоже легко выразить x из первого.
2x = 10 + 5y
Подставляем в первое, умножаем не на 4, а на 2, т.к. у нас уже 2x.
2(10 + 5y) - y = 2
20 + 10y - y = 2
18 = -9y
y = -2
Подставляем в 2x = 10 + 5y > 2x = 10 - 10 ===> x = 0
x = 0; y = -2
3. Тут конечно тоже можно выразить x и т.д., но ради разнообразия решим через алгебраическое сложение уравнений. Складываем все, что левее равно в первом, с тем, что левее равно во втором, ну и с тем, что правее соответственно. Знаки не меняем!
x - 2y + y - x = 1 - 2
-y = -1
y = 1
Теперь ищем x из первого.
x - 2 = 1
x = 3; y = 1
4. Тут тоже подойдет метод алгебраического сложения. Вообще, в этом номере все можно решить, выражая одну из переменных через метод алг-го сложения удобнее. Есть системы, где выразить переменную сложнее. Часто именно сложением или вычитание (это все метод алгебраического сложения) решить.
x + y + x - y = -3 - 1
2x = -4
x = -2
Подставляем в первое.
-2 + y = -3
y = - 1
x = -2; y = -1
Все. Если будут во пиши.
p.s. Отметь, как лучший, если не сложно ;)
АВСД - равнобокая трапеция, АВ=СД, ВС=6 см, ∠АВС=120° , ∠САД=30°. Найти АС.
Так как ∠АВС=120°, то ∠ВАД=180°-120°=60° ,
∠САД=30° ⇒ ∠ВАС=∠ВАД-∠САД=60°-30°=30° .
Значит диагональ АС - биссектриса ∠А .
∠АСВ=∠САД=30° как внутренние накрест лежащие при АД || ВC и секущей АС ⇒ ΔАВС - равнобедренный , т.к. ∠ВАС=∠АСВ .
Значит, АВ=АС=6 см .
Опустим перпендикуляры на основание АД из вершин В и С: ВН⊥АС , СМ⊥АД , получим прямоугольник ВСМН и два треугольника АВН и СМД .
Рассмотрим ΔАВН: ∠ВНА=90°, ∠ВАН=∠ВАД=60° , АВ=6 см ⇒
∠АВН=90°-80°=30°
Против угла в 30° лежит катет, равный половине гипотенузы ⇒ АН=6:2=3 см.
Так как ΔАВН=ΔСМД (по гипотенузе АВ=СД и острому углу ∠ВАД=∠АДС), то МД=АН=3 см.
НМ=ВС=6 см как противоположные стороны прямоугольника ВСМН.
АД=АН+НМ+МД=3+6+3=12 см.