Данное дифференциальное уравнение является обыкновенным дифференциальным уравнением первого порядка (ОДУ I) Здесь y' = dy/dx. Значит, (x^2+1)dy=(y^2+1)x dx | : (x^2+1) : (y^2+1) (комментарий: разделим оба части уравнения на x^2+1 и y^2+1) dy/(y^2+1) = x dx / (x^2+1) Проинтегрировав обе части уравнения, 1) dy/(y^2+1) = arctg y +C1(по таблице интегралов) 2) x dx / (x^2+1) = d(x^2+1) / (x^2+1) = 1/2 ln(x^2+1) +C2 получим arctg y + C1 = 1/2 ln(x^2 + 1) + C2 (Пусть C = C2-C1) arctg y = 1/2 ln(x^2 +1) + C - общий интеграл данного ОДУ (т.е. само решение)
ДАНО: S=112 км. Sa>Sv на 48 км за 1 час. Tv-Ta= 7:28 НАЙТИ: Va=? Пишем два уравнения. 1) Vv= Va- 48 - путь за 1 час - это скорость в км/час. Переводим время 7:28 в часы - 7+28/60 = 7 7/15 час. = 112/15 час. 2) S/Vv - S/Va =112/15 - время обгона велосипедиста Приводим к общему знаменателю 2) подставив путь = 112 км. 112*Va - 112*Va +112*48 = Va*(Va-48)*(112/15) V^2 - 48*V = 48*15 = 720 Решаем квадратное уравнение и получаем корни Va= 60 км/час. и -12, которое нам не подходит. Из уравнения 1) Vv = Va-48 = 12 км/час
Здесь y' = dy/dx. Значит,
(x^2+1)dy=(y^2+1)x dx | : (x^2+1) : (y^2+1) (комментарий: разделим оба части уравнения на x^2+1 и y^2+1)
dy/(y^2+1) = x dx / (x^2+1)
Проинтегрировав обе части уравнения,
1) dy/(y^2+1) = arctg y +C1(по таблице интегралов)
2) x dx / (x^2+1) = d(x^2+1) / (x^2+1) = 1/2 ln(x^2+1) +C2
получим
arctg y + C1 = 1/2 ln(x^2 + 1) + C2 (Пусть C = C2-C1)
arctg y = 1/2 ln(x^2 +1) + C - общий интеграл данного ОДУ (т.е. само решение)