Разложим знаменатель на множители:
Сумма коэффициентов равна нулю, значит корни уравнения 1 и -1/3.
Интеграл примет вид:
Разложим дробь, стоящую под знаком интеграла, на составляющие:
Дроби равны, знаменатели равны, значит равны и числители:
Многочлены равны, когда равны коэффициенты при соответствующих степенях. Составим систему:
Выразим из второго уравнения А:
Подставляем в первое и находим В:
Находим А:
Сумма принимает вид:
Значит, интеграл примет вид:
Для второго слагаемого выполним приведение под знак дифференциала:
Интегрируем:
Упрощаем:
Применим свойство логарифмов:
вот:
Объяснение:
1) Дана система уравнений, которую будем решать методом подстановки.
7х + 3у = 43;
4х - 3у = 67;
2) Выразим переменную 3у через х в первом выражении:
3у = 43 - 7х;
4х - 3у = 67;
3) Подставим переменную 3у во второе выражение:
4х - (43 - 7х) = 67;
4) Раскроем скобки:
4х - 43 + 7х = 67
5) Упорядочим уравнение:
11х = 110
6) Найдем х:
х = 110 / 11 = 10;
8) Найдем у, подставив найденную переменную х в любое из выражений:
70 + 3у = 43;
3у = -27;
у = -27 / 3 = -9.
ответ: переменная х = 10, переменная у = -9.
а) х є R
б) х є R
в) х є R
г) х є R
д) х є R, х0
е) х є (5; +бесконечности)