|x-1| + |x-a| = 1 - a
Сразу заметим, что левая часть ≥ 0, значит и правая часть должна будет тоже быть ≥ 0 :
1 - a ≥ 0
a ≤ 1
Теперь может найти подмодульные нули :
1) x - 1 = 0 2) x - a = 0
x = 1 x = a
Выставим их на числовой прямой и заметим, что а будет находиться сзади 1, так как мы выяснили что а ≤ 1, а при а = 1 есть только один корень :
x < a a ≤ x < 1 x ≥ 1
(a)(1)
Рассмотри три случая :
1) x < a
-x + 1 - x + a = 1 - a
-2x + 2a = 0
2(a - x) = 0
x = a - не подходит, т.к x < a
ответ : x ∈ ∅
2) a ≤ x < 1
-x + 1 + x - a = 1 - a
0 = 0
x ∈ R
ответ : x ∈ [a ; 1)
3) x ≥ 1
x - 1 + x - a = 1 - a
2x = 2
x = 1
ответ : x = 1
Соединим все наши решения :
[ x ∈ ∅
[ x ∈ [a ; 1)
[ x = 1
x ∈ [a ; 1]
Уравнение будет иметь ровно 3 целых решения, если а = -1.
Уравнение будет иметь 3 и больше решений при а ≤ -1
Раскрываем знак модуля:
Если cosx >0, то |cosx|=cosx
уравнение принимает вид:
По формуле произведения синуса на косинус:
тогда
По формуле разности синусов:
или
и
и
О т в е т первого случая c учетом cosx >0:
Если cosx <0, то |cosx|= - cosx
уравнение принимает вид:
По формуле синуса двойного угла
тогда
или
или
так как
и
и
О т в е т второго случая c учетом cosx <0
О т в е т. Объединяем ответы первого и второго случаев: