Задача 10.
Это уравнение эллипса со смещённым центром. Координаты смещённого центра 0 (1; -3) - берём из верхних двух скобок.
Удобнее зап�сать (х - 1)² / 4² + (у + 3)² / 5² = 1
а= 4 (расстояние от смещённого центра до вершин эллипса по оси Х в обе стороны по 4)
b = 5 (расстояние от смещённого центра до вершин эллипса по оси У вверх и вниз по 5)
Сначала отметим на оси координат смещённый центр 0(1; -3)
От смещённого центра отметим на оси Х по 4 единицы влево и вправо, получим точку А1 (5; -3) и точку А2 (-3; -3)
От смещённого центра отметим по оси У по 5 единиц вверх и вниз, получим точку В1 (1; 2) и точку В2 (1; -8)
В1В2 - большая ось эллипса
А1А2 - малая ось эллипса
Так как в данном уравнении b больше а, эллипс будет вытянут вдоль оси У, по оси В1В2
Аккуратно по полученным точкам А1 А2 В1 В2 строим эллипс.
Найдём фокусы эллипса.
Так как b больше а, фокусы будут лежать на оси В1В2
Чтобы найти фокусы, нужно найти значение с
с² = b² - a² c² = 25 - 16 c² = 9 c = 3
Вычисляем фокусы: F1 (1; -3 +3) ⇒ F1 (1; 0)
F2 (1; -3-3) ⇒ F2 (1; -6)
Отмечаем фокусы на оси В1В2: от смещённого центра вверх и вниз по оси У по 3 единицы, или можно по их координатам.
Оси Х и У имеются ввиду в новой системе координат, где центр находится в точке 0 (1; -3)
Как-то кривенько все получается, либо приблизительно, либо с корнями...
Ну смотрите сами.
1. А+В = 5
А*В = -2
Выражаем А через В
А = (5-В) и подставляем во второе выражение
(5-В)* В = -2, раскрываем скобки и получаем кв. уравнение
В в кв - 5В - 2= 0, по формуле находим корни В1 В2
В1 = ( 5- кв корень(25+8)):2 = 2.5 - кв корень(33)/2
В2 = ( 5 + кв корень(25+8))/2 = 2.5 + кв корень(33)/2
Потом находим А1 и А2
А1 = 5 - (2.5 - кв корень(33)/2) = 2.5 + кв корень (33)/2
А2 = 5 - (2.5 + кв корень(33)/ 2) = 2,5 - кв корень(33)/2
Теперь ищем (А-В) в кв (А1-В1) и (А2-В2)
1. ((2.5+кв к(33)/2)-(2.5-кв.к(33)/2)в кв =( кв к(33))в кв = 33
2. ((2.5-кв к(33)/2)- (2,5+кв к(33)/2)в кв = (-кв к(33))в кв = 33
Проверьте, может где-то перемудрила, но основная мысль такова.
Удачи!