Для нахождения точек пересечения с осью Х x^4-4x^2=0 х1=0; х2=2; х3=-2; Для нахождения экстреммумов функции нужно взять производную и прировнять ее 0 f(x)=x^4-4x^2 => f'(x)=4*x^3-8x=0 Корни: х1=0; х2=2^0.5; х3=-2^0.5; (корень квадратный из 2) теперь нужно узнать, что это за точки минимумы или максимумы, возмем значение слева и справа от точки и подставим в уранение если знак меняется с + на - значит максимум если наоборот минимум -2^0.5 0 2^0.5 ---*---о*о*---о*-- -2 -1 1 2
x=0 => y= 0 x=-2^0.5 => y= -4 x=2^0.5 => y= -4
x=-2 => y= 0 x=-1 => y=-3 x=1 => y=-3 x=2 => y= 0
Значение функции меняется от -2 до -2^0.5 функция убывает от 0 до -4 , а от -2^0.5 до -1 ворастает от -4 до -3 следовательно f(-2^0.5) минимум. Значение функции меняется от -1 до 0 функция возрастает от -3 до 0 , а 0 до 1 убывает от 0 до -3 следовательно f(0) максимум. Значение функции меняется от 1 до 2^0.5 функция убывает от -3 до -4 , а от 2^0.5 до 2 ворастает от -4 до 0 следовательно f(2^0.5) минимум.
Исследование завершено Точки пересечения с осью Х х1=0; х2=2; х3=-2; Минимум (-2^0.5;-4) и (2^0.5;-4) Максимум (0;0)
Формулы для квадратов (a + b )2 = a 2 + 2ab + b 2– квадрат суммы (a – b )2 = a 2 – 2ab + b 2– квадрат разностиa 2 – b 2 = (a – b )(a + b )– разность квадратов (a + b + c )2 = a 2 + b 2 + c 2 + 2ab + 2ac + 2bc Формулы для кубов (a + b )3 = a 3 + 3a 2b + 3a b 2 + b 3– куб суммы (a – b )3 = a 3 – 3a 2b + 3a b 2 – b 3– куб разностиa 3 + b 3 = (a + b )(a 2 – ab + b 2)– сумма кубовa 3 – b 3 = (a – b )(a 2 + ab + b 2)– разность кубов Формулы для четвёртой степени (a + b )4 = a 4 + 4a 3b + 6a 2b 2 + 4a b 3 + b 4(a – b )4 = a 4 – 4a 3b + 6a 2b 2 – 4a b 3 + b 4a 4 – b 4 = (a – b )(a + b )(a 2 + b 2) Формулы для n -той степени (a + b )n = an + na n – 1b + n (n – 1)a n – 2b 2 + ..+ n !an – kbk + ..+ bn 2k !(n – k )!(a – b )n = an – na n – 1b + n (n – 1)a n – 2b 2 + ..+ (-1)k n !an – kbk + ..+ (-1)nbn 2k !(n – k )!
48 Є N
48 является натуральным числом