Объяснение:
Система уравнений:
x/2 +y/2 -2xy=16 |×2
x+y=-2
x+y-4xy=32
-2-4xy=32
-4xy=32+2
-4xy=34 |2
x=-17/(2y)
-17/(2y) +y=-2
(-17+2y²)/(2y)=-2
-17+2y²=-4y
2y²+4y-17=0; D=16+136=152
y₁=(-4-2√38)4=(-2-√38)/2
y₂=(-4+2√38)4=(√38 -2)/2
x₁+(-2-√38)/2=-2; x₁=(-4+2+√38)/2=(√38 -2)/2
x₂+(√38 -2)/2=-2; x₂=(-4-√38 +2)/2=(-2-√38)/2
ответ: ((√38 -2)/2; (-2-√38)/2); ((-2-√38)/2; (√38 -2)/2).
Система уравнений:
x/2 +y/2 +2xy=4
x-y=4
x/2 +y/2 +2xy=x-y |×2
x+y+4xy=2x-2y
4xy=2x-2y-x-y
4xy=x-3y
x-4xy=3y
x(1-4y)=3y
x=(3y)/(1-4y)
(3y)/(1-4y) -y=4
(3y-y+4y²)/(1-4y)=4
2(y+2y²)=4(1-4y) |2
2y²+y-2+8y=0
2y²+9y-2=0; D=81+16=97
y₁=(-9-√97)/4
y₂=(-9+√97)/4=(√97 -9)/4
x₁ -(-9-√97)/4=4; x₁=(16-9-√97)/4=(7-√97)/4
x₂ -(√97 -9)/4=4; x₂=(16+√97 -9)/4=(7+√97)/4
ответ: ((7-√97)/4; (-9-√97)/4); ((7+√97)/4; (√97 -9)/4).
Находим производную функции, как производную суммы: ( u + v )' = u' + v' . И приравниваем его к нулю, так как в экстремумах производная равна нулю.
у' = ( х³ - 2х² + х - 2 )' = ( х³ )' - ( 2х² )' + ( х )' - ( 2 )' = 3х² - 4х + 1у' = 0 ⇒ 3х² - 4х + 1 = 0D = (-4)² - 4•3•1 = 16 - 12 = 4 = 2²x₁ = ( 4 - 2 )/6 = 2/6 = 1/3x₂ = ( 4 + 2 )/6 = 6/6 = 1y' [ 1/3 ][ 1 ]> xy __↑__[ x (max) ]__↓__[ x (min) ]__↑__> xЗначит, точка минимума ⇒ х = 1ОТВЕТ: 12) Найдите точку максимума функции у = 9 - 4х + 4х² - х³у' = - 4 + 8х - 3х² ; у' = 0- 4 + 8x - 3х² = 03x² - 8x + 4 = 0D = (-8)² - 4•3•4 = 64 - 48 = 16 = 4²x₁ = ( 8 - 4 )/6 = 4/6 = 2/3x₂ = ( 8 + 4 )/6 = 12/6 = 2y' [ 2/3 ][ 2 ]> xy __↓__[ x (min) ]__↑__[ x (max) ]__↓__> xЗначит, точка максимума ⇒ х = 2ОТВЕТ: 23) Найдите точку минимума функции у = х³ - 3,5х² + 2х - 3у' = 3х² - 7х + 2 ; у' = 0 ⇒3х²- 7х + 2 = 0D = (-7)² - 4•3•2 = 49 - 24 = 25 = 5²x₁ = ( 7 - 5 )/6 = 2/6 = 1/3x₂ = ( 7 + 5 )/6 = 12/6 = 2y' [ 1/3 ][ 2 ]> xy __↑__[ x (max) ]__↓__[ x (min) ]__↑__> xЗначит, точка минимума ⇒ х = 2ОТВЕТ: 24) Найдите точку максимума функции у = х³ + х² - 8х - 7у' = 3х² + 2х - 8 ; у' = 0 ⇒3х² + 2х - 8 = 0D = 2² - 4•3•(-8) = 4 + 96 = 100 = 10²x₁ = ( - 2 - 10 )/6 = - 12/6 = - 2x₂ = ( - 2 + 10 )/6 = 8/6 = 4/3y' [ - 2 ][ 4/3 ]> xy ___↑___[ x (max) ]__↓__[ x (min) ]__↑__> xЗначит, точка максимума ⇒ х = - 2ОТВЕТ: - 25) Найдите точку минимума функции у = х³ - 4х² - 3х - 12у' = 3х² - 8х - 3 ; у' = 0 ⇒3х² - 8х - 3 = 0D = (-8)²- 4•3•(-3) = 64 + 36 = 100 = 10²x₁ = ( 8 - 10 )/6 = - 2/6 = - 1/3x₂ = ( 8 + 10 )/6 = 18/6 = 3y' [ - 1/3 ][ 3 ]> xy ___↑__[ x (max) ]__↓__[ x (min) ]__↑__> xЗначит, точка минимума ⇒ х = 3ОТВЕТ: 36) Найдите точку максимума функции у = х³ + 8х² + 16х + 3у' = 3х² + 16х + 16 ; у' = 0 ⇒3х² + 16х + 16 = 0D = 16² - 4•3•16 = 16•( 16 - 12 ) = 16•4 = 4²•2² = 8²x₁ = ( - 16 - 8 )/6 = - 24/6 = - 4x₂ = ( - 16 + 8 )/6 = - 8/6 = - 4/3y' [ - 4 ][ - 4/3 ]> xy __↑__[ x (max) ]__↓__[ x (min) ]__↑___> xЗначит, точка максимума ⇒ х = - 4ОТВЕТ: - 47) Найдите точку минимума функции у = х³ + х² - 16х + 5у' = 3х² + 2х - 16 ; у' = 0 ⇒3х² + 2х - 16 = 0D = 2² - 4•3•(-16) = 4•( 1 + 48 ) = 4•49 = 2²•7² = 14²x₁ = ( - 2 - 14 )/6 = - 16/6 = - 8/3x₂ = ( - 2 + 14 )/6 = 12/6 = 2y' [ - 8/3 ][ 2 ]> xy __↑__[ x (max) ]__↓__[ x (min) ]__↑___> xЗначит, точка минимума ⇒ х = 2ОТВЕТ: 28) Найдите точку максимума функции у = х³ + 4х² + 4х + 4у' = 3х² + 8х + 4 ; у' = 0 ⇒3х² + 8х + 4 = 0D = 8² - 4•3•4 = 64 - 48 = 16 = 4²x₁ = ( - 8 - 4 )/6 = - 12/6 = - 2x₂ = ( - 8 + 4 )/6 = - 4/6 = - 2/3y' [ - 2 ][ - 2/3 ]> xy __↑__[ x (max) ]__↓__[ x (min) ]__↑___> xЗначит, точка максимума ⇒ х = - 2ОТВЕТ: - 29) Найдите точку минимума функции у = х³ - 4х² - 8х + 8у' = 3х² - 8х - 8 ; у' = 0 ⇒3х² - 8х - 8 = 0D = (-8)² - 4•3•(-8) = 64 + 96 = 160 = (4√10)²x₁ = ( 8 - 4√10 )/6 = (4 - 2√10)/3x₂ = ( 8 + 4√10 )/6 = (4 + 2√10)/3y' [ (4-2√10)/3 ][ (4+2√10)/3 ]> xy ___↑__[ x (max) ]↓[ x (min) ]↑___> xЗначит, точка минимума ⇒ х = (4+2√10)/3ОТВЕТ: (4+2√10)/310) Найдите точку максимума функции у = х³ + 5х² + 3х + 2 у' = 3х² + 10х + 3 ; у' = 0 ⇒3х² + 10х + 3 = 0D = 10² - 4•3•3 = 100 - 36 = 64 = 8²x₁ = ( - 10 - 8 )/6 = - 18/6 = - 3x₂ = ( - 10 + 8 )/6 = - 2/6 = - 1/3y' [ - 3 ][ - 1/3 ]> xy __↑__[ x (max) ]__↓__[ x (min) ]__↓__> xЗначит, точка максимума ⇒ х = - 3ОТВЕТ: - 3