Пусть изначальное число xy, т.е х десятков и у единиц. ху=10х+у сумма цифр равна 10, т.е х+у=10 переставили цифры: ух, теперь ух=10у+х цифру единиц увеличили на 1, т.е. 10у+х+1 и раз новое число в 2 раза больше изначального можно составить уравнение: 10у+х+1=2(10х+у) 10у-2у=20х-х-1 8у=19х-1 выразим из первого уравнения х+у=10: у=10-х 8(10-х)=19х-1 19х+8х=80+1 27х=81 х=3 тогда у=10-х=10-3=7 получилось число 37 проверяем сумма цифр: 3+7=10 Если цифры этого числа переставить и цифру единиц нового числа увеличить на 1: получаем 73+1=74 и 74/2=37
Для доказательства достаточно подставить вместо х предложенное значение и выяснить, будет ли равенство верным. а) х= 3 3²-4·3+3=0 9-12+3=0 0=0 - верное равенство, значит, число 3 является корнем уравнения х²-4х+3=0. Доказано.
б) х= - 7 2·(-7)²+(-7)-3=0 98-7-3=0 88≠0 - неверное равенство, значит, число -7 не является корнем уравнения 2х² +х-3=0.
Дан логарифм log 0.5 (x - 4) = - 2 с основанием 0,5.
По свойству логарифма 0,5^(-2) = x - 4.
0,5 = 1/2.
(1/2)^(-2) = 1/((1/2)²) = 4.
4 = x - 4.
x = 8.