Подробное объяснение: 1) Ищем нули функции: первая скобка равна нулю при х=-2 вторая скобка равна нулю при х=4 2) Рисуем числовую ось и расставляем на ней найденные нули функции - точки -2 и 4 (-2)(4) Точки рисуем с пустыми кружочками ("выколотые"), т.к. неравенство у нас строгое (знак < )
3) Начинаем считать знаки на каждом интервале, начиная слева-направо. Для этого берём любую удобную для подсчёта точку из интервала, подставляем её вместо икс и считаем знак: 1. х=-100 -100+2 <0 знак минус -100-4 <0 знак минус минус*минус=плюс Ставим знак плюс в крайний левый интервал + (-2)(4)
2. аналогично, х=0 0+2 >0 знак плюс 0-4 <0 знак минус плюс*минус=минус + _ (-2)(4)
3. x=100 100+2>0 знак плюс 100-4>0 знак плюс плюс*плюс=плюс + - + (-2)(4)
Итак, знаки на интервалах мы расставили. Смотрим на знак неравенства: < 0 Значит, нам надо взять только те интервалы, где стоят минусы. В данном случае, такой интервал один (-2;4) Это и есть ответ.
Теперь краткая запись решения: (х+2)(х-4)<0 + - + (-2)(4)
x₁ = - 2 - √5
x₂ = - 2 + √5
x₃ = -3
x₄ = -1
(x² + 4x - 1)(x² + 4x + 3) = 0
Будем решать методом субституции:
t = x²+4x
Заменяем в исходном уравнении x²+4x на t:
(t - 1)(t + 3) = 0
Ищем корни:
t - 1 = 0
t₁ = 1
t + 3 = 0
t₂ = -3
Теперь приравниваем x²+4x к t₁ и к t₂:
1)
x² + 4x = 1
x² + 4x - 1 = 0
(x + 2)² - 5 = 0
(x + 2)² = 5
Ищем первый корень:
x + 2 = -√5
x₁ = - 2 - √5
Ищем второй корень:
x + 2 = √5
x₂ = - 2 + √5
2)
x² + 4x = -3
x² + 4x + 3 = 0
(x + 2)² - 1 = 0
(x + 2)² = 1
Ищем третий корень:
x + 2 = -1
x₃ = -3
Ищем четвёртый корень:
x + 2 = 1
x₄ = -1