М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
daniyanefedova563
daniyanefedova563
28.03.2023 19:53 •  Алгебра

Лодка проплыла 3ч против течения реки и 2ч по течению, проплыв всего 32км. Нвцтм собственную скорость лодки, если скорость течения 3км/ч.

👇
Ответ:
LebedevAleksand
LebedevAleksand
28.03.2023

х- собственную скорость лодки

х-3 - скорость против течения

х+3 - скорость по течению

3(х-3) - расстояние против течения

2(х+3) - расстояние по течению

3(х-3)+2(х+3)=32

3х-9+2х+6=32

5х=35

х=7 км/ч - скорость лодки

4,4(41 оценок)
Открыть все ответы
Ответ:

а). В этом числе ноль встречается 9 раз, а числа 2, 3, 9 - по 20 раз.

б). Да, 123...9899 делится на 9.

Сначала посчитаем, сколько всего в числе 1234..9899 было выписано цифр 0, 1, 2, 3, 9. Это тоже самое, что и посчитать, сколько раз встречаются эти же цифры в числах от 1 до 99.

Цифра 0:

10, 20, 30, 40, 50, 60, 70, 80, 90 - всего 9 раз.

Цифра 1:

1, 10 - 19 (11 раз), 21, 31, 41, 51, 61, 71, 81 ,91 - всего 20 раз.

Понятно, что 2, 3, 9 встречаются столько же раз, сколько и 1 (все они могут стоять 10 раз в разряде единиц, и 10 раз - в разряде десятков).

Теперь нужно узнать, делится ли число 1234..9899 на 9.

Признак делимости на 9: число делится на 9 тогда и только тогда, когда сумма его цифр тоже делится на 9.

Так что мы должны узнать, делится ли 1 + 2 + 3 + ... + 99 на 9.

Для этого найдем искомую сумму по формуле арифметической прогрессии:

S = \frac{(a_1+a_n)n}{2} = \frac{(1+99)*99}{2} = \frac{9900}{2} = 4950.

4950:9=550.

Так как получилось разделить нацело, то 1234...9899 делится на 9.

4,4(46 оценок)
Ответ:

Відповідь:

Еще недавно, учась сложению чисел, мы складывали кучки из монет. Тогда перед нами стояла задачи сложить две кучки. Но допустим, мы хотим теперь сложить не две, а несколько кучек. Это можно было бы сделать так: сгребаем их все сразу в одну большую кучу и пересчитываем в ней все монеты. Такой сложения всем бы был хорош, да только ни на счетах, ни на бумаге нельзя сделать ничего подобного. На счетах и бумаге мы умеем складывать между собой только два числа. Поэтому мы не будем сгребать вместе сразу все кучки, а поступим так, чтобы все наши действия можно было легко перенести на бумагу.

Итак, перед нами несколько кучек из монет. Мы знаем, сколько монет в каждой кучке, и теперь мы хотим узнать, сколько же у нас всего монет во всех кучках. Мы берем любые две кучки и сдвигаем их вместе, образуя одну новую кучку побольше. Умея складывать два числа на бумаге, мы сможем легко вычислить, сколько у нас монет в новой кучке без фактического их пересчета. Теперь у нас стало на одну кучку меньше. Далее, берем еще две кучки, сливаем их воедино, вычисляем новое число монет в только что образованной кучке и, таким образом, снова уменьшаем количество кучек на одну. Мы повторяем и повторяем эту процедуру, уменьшая всякий раз число кучек на единицу, до тех пор пока у нас не останется одна-единственная большая куча. Число монет в этой куче нам известно, причем вычислили мы его на бумаге, а не прямым пересчетом.

Очевидно, мы получим один и тот же ответ, совершенно независимо от того, в каком порядке мы сдвигали кучки. А значит, когда перед нами находится сумма чисел, например,

8 + 9 + 2,  мы можем вычислять ее тоже в любом порядке. Поэтому мы всегда будем выбирать такой порядок, какой для нас наиболее удобен. В данном случае удобно вначале сложить восьмерку и двойку, а потом добавить девятку:

8 + 2 + 9 = 10 + 9 = 19.

4,6(61 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ