Скорость плота=скорости течения реки. найдем время плота 51:3=17 (ч) плыл плот 17-1=16 (ч) плыла лодка Пусть х-собственная скорость лодки тогда ее скорость по течению х+3, а скорость против течения х-3. 140/х+3 — время по течению 140/х-3 — время против течения
140/х+3 + 140/х-3=16 140(х-3)+140(х+3)=16(х^2-9) 140х-420+140х+420=16х^2-144 280х=16х^2-144 16х^2-280х-144=0 2х^2-35х-18=0 Д=35^2+4*2*18=1369=37^2 х1=35+37/4=18 (км/ч) - скорость лодки х2=35-37/4= -2/4 — не удовлетворяет условию задачи. ответ: 18 км/ч собственная скорость лодки
1) sin2x >/ 0
arcsin(0) + 2πk </ 2x </ π-arcsin(0) + 2πk , k € Z
0 + 2πk </ 2x </ π-0 + 2πk , k € Z
2πk </ 2x </ π + 2πk , k € Z / : 2
πk </ x </ π/2 + πk , k € Z
2) cos x/2 < √2/2
arccos(√2/2) + 2πk < x/2 < 2π - arccos(√2/2) + 2πk , k € Z
π/4 + 2πk < x/2 < 2π - π/4 + 2πk , k € Z
π/4 + 2πk < x/2 < 8π/4 - π/4 + 2πk , k € Z
π/4 + 2πk < x/2 < 7π/4 + 2πk , k € Z / : 1/2
π/2 + 4πk < x < 7π/2 + 4πk , k € Z
3) tg ( x - π/3 ) > √3
Замена (x-π/3) = a
tg a > √3
arctg(√3) + πk > a > π/2 + πk , k € Z
π/3 + πk > x - π/3 > π/2 + πk , k € Z
π/3 + π/3 + πk > x > π/2 + π/3 + πk , k € Z
2π/3 + πk > x > 3π/6 + 2π/6 + πk , k € Z
2π/3 + πk > x > 5π/6 + πk , k € Z
4) ctg (x+π/3) </ - 1/√3
Замена (x+π/3) = a
ctg a </ - 1/√3
arcctg(-1/√3) + πk </ a </ π + πk , k € Z
(π-arcctg(1/√3)) + πk </ a </ π + πk , k € Z
(π-π/3) + πk </ a </ π + πk , k € Z
2π/3 + πk </ a </ π + πk , k € Z
2π/3 + πk </ x+π/3 </ π + πk , k € Z
2π/3 - π/3 + πk </ x </ π - π/3 + πk , k € Z
π/3 + πk </ x </ 2π/3 + πk , k € Z