М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dashab1212200
dashab1212200
07.09.2021 04:41 •  Алгебра

Сократите дробь
у+3 / у^2-9,
25-а^2 / 3а-15,
(3х-3у)^2 / 9у^2 - 9у

👇
Ответ:
flag4
flag4
07.09.2021

решение на листочке...


Сократите дробь у+3 / у^2-9, 25-а^2 / 3а-15,(3х-3у)^2 / 9у^2 - 9у
4,6(38 оценок)
Открыть все ответы
Ответ:
joryk2012
joryk2012
07.09.2021

1) a) 4+12x+9x2

      4+12x+18

      22+12x

      2(11+6x)

 б)  25-40х+16х2

      25-40х+32

      57-40х

 г)  -56а+49а*2+16

      -56а+98а+16

       42а+16

       2(21а+8)

2)  a)  (y-1)(y+1)    б) p^2-9    г) (3x-2)(3x+2)    д) (3x)^2-2^2   е) a^2-3^2

         y^2-1                              (3x)^2-2^2           9x^2-4            a^2-9

   в) 4^2-(5y^2)                       9x^2-4

       16-25y^2

4)  a) a3-b3      б)  27a3+8b3

      3(a-b)             81a+24b

                             3(27a+8b)

4,8(100 оценок)
Ответ:
hjhffff
hjhffff
07.09.2021
Чтобы определить количество корней в квадратном уравнении, достаточно вычислить его дискриминант по формуле: D= b^2-4ac (если дискриминант больше нуля уравнение имеет 2 корня, если равен нулю, уравнение имеет 1 корень, если меньше нуля, то нет корней), либо применяя разложение многочлена

3x^2-x-2=0\\
D=1^2-4\cdot3\cdot(-2)=1+24=25; \ D\ \textgreater \ 0

Дискриминант больше нуля - два корня

16x^2+8x+1=0\\
D=8^2-4\cdot 16\cdot1=64-64=0

Дискриминант равен нулю. В уравнении 1 корень

x^2+6x+10=0\\
D=36-40=-4; D\ \textless \ 0

Дискриминант меньше нуля, значит нет действительных корней

2) y= \frac{ \sqrt{x+3} }{x^2+x}

Найти область определения функции - это найти "проблемные точки" в функции, при которых функция перестанет существовать.
В нашем случае, это нельзя допускать, когда знаменатель обратится в ноль. Для этого мы должны его приравнять к нулю и выяснить, при каких значениях функция перестанет существовать.

x^2+x \neq 0\\
x(x+1) \neq 0\\
x_1 \neq 0\\\\
x+1 \neq 0\\
x_2 \neq -1

В нашем случае функция не имеет смысла, при х=-1 и х=0
4,5(76 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ