М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Alex2005G91
Alex2005G91
30.03.2021 19:59 •  Алгебра

Найдите наименьшее значение функции y=9x^2-x^3 на отрезке

👇
Ответ:
rockstar9494
rockstar9494
30.03.2021

y=9x^2-x^3\ \ ,\ \ x\in [-1\ ;\ 5\ ]\\\\y'=18x-3x^2=-3x\, (x-6)=0\ \ ,\ \ \ x_1=0\ ,\ x_2=6\\\\znaki\ y'(x):\ \ \ ---(0)+++(6)---\\{}\qquad \qquad \qquad \qquad \searrow \, (0)\ \ \nearrow \, \ \ (6)\ \ \ \searrow \\{}\qquad \qquad \qquad \qquad \quad (min)\ \ \ \ \ (max)\\\\x_{min}=0\ \ ,\ \ y_{min}=y(0)=0\\\\x_{max}=6\notin [-1\ ;\ 5\ ]

y(-1)=9\cdot (-1)^2-(-1)^3=10\\\\y(5)=9\cdot 5^2-5^3=100\\\\\boxed{y_{naimen.}=y(0)=0\ \ ,\ \ \ y_{naibol.}=y(5)=100\ }

4,4(2 оценок)
Открыть все ответы
Ответ:
yuraseven77
yuraseven77
30.03.2021

Если ещё не изучено понятие производной, то решение может быть таким:

1. -2;

2. 3.

Объяснение:

1.Sn=6n-n^2

a1 = S1 = 6•1 - 1^2 = 5;

a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;

a2 = S2 - S1 = 8 - 5 = 3.

Найдём d:

d = a2 - a3 = 3 - 5 = -2.

2. Sn=6n-n^2

Рассмотрим квадратичную функцию

у = 6х - х^2.

Графиком функции является парабола

у = - х^2 + 6х

Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:

х вершины = -b/(2a) = -6/(-2) = 3.

y вершины = - 3^2 +6•3 = -9+18 = 9.

Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.

Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.

Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.

ответить на второй вопрос можно и по-прежнему другому:

Sn=6n-n^2

- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.

Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.

В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.

4,8(48 оценок)
Ответ:
Linarikkomarik
Linarikkomarik
30.03.2021
Область допустимых значений (ОДЗ): x >= -4.
x - 4*V(x + 4) - 1 < 0 ( V - корень квадратный).
x - 1 < 4*V(x + 4)
Правая часть неравенства <= 0 для всех х из ОДЗ, левая часть < 0 при x < 1, то есть неравенство выполняется при x < 1,
с учетом ОДЗ получаем -4 <= х < 1.
Пусть x >= 1.
Возведем обе части неравенства в квадрат
(x - 1)^2 < 16*(x + 4)
x^2 - 2*x + 1 < 16*x + 64
x^2 - 18*x - 63 < 0
Равенство верно на интервале между корнями уравнения.
Корни х1 = -3, х2 = 21, неравенство выполняется для -3 < х < 21, с учетом x >= 1 получаем 1 <= х < 21.
Объединяем условия -4 <= х < 1 и 1 <= х < 21, получаем
ответ: -4 <= х < 21.
4,6(94 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ