\left \{ {{(2x+3)^{2} =-7y} \atop {(2x+5)=-7y}} \right.
Выразим y:
(2x+3)^{2} = -7y
4x^{2}+12x+9 = -7y
y = \frac{4x^{2}+12x+9}{-7}
Решим систему:
\left \{ {{(2x+3)^{2} =-7y} \atop {(2x+5)=-7y}} \right.
\left \{ {{(2x+3)^{2} =-7y | } \atop {(2x+5)=-7y | *(-1)}} \right.
\left \{ {{(2x+3)^{2} =-7y} \atop {-(2x+5)=7y}} \right.
Суммируем:
(2x+3)^{2} -(3x+5)^{2} = 0
Раскроем скобки:
(4x^{2} +12x+9) -(9x^{2}+30x+25) = 0
4x^{2} +12x+9 -9x^{2}-30x-25
-5x^{2}-18x-16 = 0 (*-1)
5x^{2}+18x+16 = 0
D = 4
\sqrt{D} = 2
x_{1} = -2 x_{-1.6}
Найдем y подставив в формулу: y = \frac{4x^{2}+12x+9}{-7}
y_{1} = \frac{4(-2)^{2}+12(-2)+9}{-7} = -\frac{1}{7}
y_{2} = \frac{4(-1.6)^{2}+12(-1.6)+9}{-7} = -\frac{1}{175}
ответ: (-2; -\frac{1}{7}); (-1.6; -\frac{1}{175}).
-3 + 2 < 5x < 4 + 2
-1 < 5x < 6
-0,2 < x < 1,2
б) (x + 2)(x - 1)(3x - 7) ≤ 0
- -2 + 1 - 7/3 +
●●●> x
x ∈ (-∞; -2) U (1; 7/3).
2. Подкоренное выражение должно быть неотрицательным:
-x² + 5x + 14 ≥ 0
x² - 5x - 14 ≤ 0
Разложим на множители.
По обратное теореме Виета:
x₁ + x₂ = 5
x₁·x₂ = -14
x₁ = 7
x₂ = -2
(x - 7)(x + 2) ≤ 0
x∈ [-2; 7]
3. Не совсем ясно, где дробь, поэтому будет два решения:
1) 7 - 2,5x ≤ -4
x² - 4x < 0
2,5x ≥ 7 + 4
x(x - 4) < 0
2,5x ≥ 11
x(x - 4) < 0
x ≥ 4,4
0 < x < 4
Для данной системы решений нет.
2) 3,5 - 2,5x ≤ - 4
x² - 4x < 0
0 < x < 4
2,5x ≥ 3,5 + 4
0 < x < 4
2,5x ≥ 7,5
0 < x < 4
x ≥ 3
ответ: 3 ≤ x < 4.
4. Приравняем к нулю:
px² + (2p + 1)x - (2 - p) = 0
Найдём дискриминант:
D = (2p + 1)² + 4p(2 - p) = 4p² + 4p + 1 + 8p - 4p² = 12p + 1
Неравенство будет верно при всех x тогда, когда D < 0.
12p < -1
p < -1/12
ответ: при p < -1/12.