Трёхзначное число, у которого в разряде сотен — цифра a, в разряде десятков — цифра b, а в разряде единиц — цифра c, равно 100a + 10b + c. (Например, 394 = 3 . 100 + 9 . 10 + 4.) Просматривая по кругу эти девять трёхзначных чисел, видим, что каждая цифра встречается ровно по одному разу в каждом из разрядов — сотен, десятков и единиц. То есть каждая цифра один раз войдёт в эту сумму с коэффициентом 100, один раз — с коэффициентом 10 и один раз — с коэффициентом 1. Значит, искомая сумма не зависит от порядка, в котором записаны цифры, и равна
1. (100 + 10 + 1)(1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9) = 111
2. 111* 45 = 4995.
ответ: 4k + 5t < 99 .
Объяснение:
k < 6 ; │X4 t < 15 ; │X5 4k < 24,
4k < 24 5t < 75 5t < 75 ; додаємо почленно :
4k + 5t < 24 + 75 ;
4k + 5t < 99 .