(1;3)
Объяснение:
1) Метод алгебраического сложения
{х+у=4 умножаем на (-2)
2х-у=5
{-2х-2у=-8
2х-у=5
Складываем уравнения
-3у=-3 умножаем на (-1)
у=3/3
у=1
Подставляем значение в одно из уравнений
х+у=4
х+1=4
х=4-1
х=3
ответ: (1;3)
2) Метод Подстановки
{х+у=4
2х-у=5
{х=4-у
2х-у=5
Подставляем значение х первого уравнения, во второе
2х-у=8
2(4-у)-у=5
8-2у-у=5
8-3у=5
-3у=5-8
-3у=-3
у=3/3
у=1
Подставляем значение у в первое уравнение
х=4-у
х=4-1
х=3
ответ: (1;3)
3) Графический
{х+у=4
2х-у=5
Берём первое уравнение
х+у=4
Пусть х будет 0, тогда у будет равно
0+у=4
у=4
Первая координата нашей прямой (0;4)
Пусть у будет 0, тогда х будет...
х+0=4
х=4
Вторая координата нашей прямой
(4;0)
Строим прямую в прямоугольной координатной плоскости, с координатами
(0;4) (4;0)
Берём второе уравнение
2х-у=5
Пусть х будет 0, тогда у будет равно
2*0-у=5
-у=5
у=-5
Первая координата нашей прямой (0;-5)
Пусть у будет равно 0, тогда х будет...
2х-0=5
2х=5
х=5/2
х=2целых1/2
х=2,5
Вторая координата прямой (2,5;0)
Строим прямую, в прямоугольной координатной плоскости, с координатами (0;-5) (2,5;0)
Точкой пересечения двух прямых, будет решением для данной системы уравнений
Координаты пересечения двух прямых является (1;3)
ответ: (1;3)
По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять
(*),
. И правда: 
(*) Очевидно, что для любого допустимого значения
выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять
(**),
. И правда: ![\dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|](/tpl/images/3820/0626/49458.png)
(**) Очевидно, что для любого допустимого значения
выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.