5 - сosx > 0 при любом х
√(5-сosx)=- √6·sinx
Уравнение имеет смысл при sinx ≤0 ⇒ x в 3 или 4 четверти
Возводим в квадрат
5-cosx=6sin²x
5-cosx=6·(1-cos²x)
6cos²x - cosx -1=0
Квадратное уравнение относительно cosx
Замена переменной
cosx=t
6t² - t - 1 = 0
D = 1 - 4·6·( -1) = 25
t₁=(1-5)/12=-1/3 или t₂=(1+5)/12=1/2
Обратный переход
cosx=-1/3
x=±arccos(-1/3)+2πn, n∈Z
условию sinx ≤0 ⇒ x в 3 или 4 четверти
удовлетворяют корни
x= - arccos(-1/3)+2πn, n∈Z
x= - (π - arccos(1/3))+2πn, n∈Z
cosx=1/2
x=±arccos(1/2)+2πm, m∈Z
x=±arccos(π/3)+2πm, m∈Z
условию sinx ≤0 ⇒ x в 3 или 4 четверти
удовлетворяют корни
x= - (π/3)+2πm, m∈Z
О т в е т. - (π - arccos(1/3))+2πn, - (π/3)+2πm, n, m∈Z
Первый мастер:
производительность - х ед./час
время работы - 1/ х часов
Второй мастер:
производительность - у ед./час
время работы - 1/у ч.
Система уравнений:
{4(x+y) = 1
{1/х - 1/у=6 |× xy
{x+y = 1/4
{1y -1x = 6xy
{y=0.25-x
{y-x=6xy
метод подстановки:
(0.25-x) -x=6x (0.25-x)
0.25-2x = 1.5x - 6x²
0.25-2x-1.5x +6x²=0
6x²-3.5x+0.25 =0
D= (-3.5)² - 4*6*0.25= 12.25-6= 6.25= 2,5²
х₁= (3,5-2,5) /(2*6) = 1/12
х₂= (3,5+2,5) /12 = 6/12= 1/2
у₁= 0,25- 1/12 = 1/4 - 1/12= 3/12 - 1/12= 2/12=1/6
у₂= 0,25 - 1/2 = 0,25 - 0,5= -0,25 - не удовл. условию
Следовательно:
х= 1/12 ( ед./час) производительность первого мастера
у=1/6 (ед./час) производительность второго мастера
1: 1/12 = 1/1 * 12/1 = 12 (ч.) время работы первого мастера
1: 1/6 = 6 (ч.) время работы второго мастера
ответ: за 12 часов может покрасить кабинет самостоятельно первый мастер, за 6 часов - второй мастер.