Объяснение:
а) 3x+2(x-1)
3x+2x-2
5x-2
б) 8(x-2)-3(x-4)
8x-16-3x+12
5x-4
в) 2x-(x+3)
2x+x-3
3x-3
г) 7x-2(x-6)
7x-2x+12
5x+12
д) 5(x-1)-2(4-x)+3
5x-5-8+2x+3
7x-10
x + y = П/4
sinx/cosx + siny/cosy = 1 | x,y <> П/2 + Пk
sinx*cosy + siny*cosx = cosx*cosy
sin(x+y) = cosx*cosy
cosx*cosy = sin(П/4)
cosx*cos(П/4-x) = sin(П/4)
cosx*(cos(П/4)*cos(x) + sin(П/4)*sin(x)) = sin(П/4) | cos(П/4) = sin(П/4)
cosx*(cosx+sinx) = 1
cos^2x + cosx*sinx = 1
cosx*sinx - sin^2x = 0
sinx*(cosx - sinx) = 0
sinx = 0 -> x = Пk, y = П/4 - Пk
cosx = sinx -> x = П/4 - Пk, y = Пk
cos^2x = sinx*siny
sin^2x = cosx*cosy
1 = sinx*siny + cosx*cosy
1 = cos(x-y)
x-y = П/2 + 2Пk, y = x + П/2 + 2Пk
cos^2x = sinx*sin(x+П/2) = sinx*cosx -> cosx = 0 | cosx = sinx
sin^2x = cosx*cos(x+П/2) = cosx*(-sinx) -> sinx = 0 | sinx = -cosx
--> cosx = 0 | sinx = 0 --> x = Пn/2, y = П(n+1)/2 + 2Пk
cosx*sqrt(cos2x) = 0 | cos2x >= 0
2sin^2x = cos(2y-П/3) | 2sin^2x <= 1
cosx*sqrt(cos^2x - sin^2x) = 0
cosx*sqrt(1 - 2sin^2x) = 0
cosx*sqrt(1 - cos(2y-П/3)) = 0
cosx = 0 -> x = П/2 + Пk - > 2sin^2x > 1 - не подходит
cos(2y-П/3) = 1 - > 2y - П/3 = П/2 + 2Пk -> y = 5П/12 + Пk | cos2x = 1 - 2sin^2x = 1 - cos(2y-П/3) = 0 -> x = П/4 + Пn/2
--> x = П/4 + Пn/2, y = 5П/12 + Пk/2
Объяснение:
а) 3x+2x-2=5x -2
б)8x-16-3x+12= 5x-4
в)2х-х-3=х-3
г)7х-2х -12= 5х-12
д)5x-5 - 8+2x +3=7x-10
Прости , вот правильно