1) x ∈ (-∞; -8) U (3; +∞)
2) x ∈ (-∞; -3) U (5; 7)
Объяснение:
1) x^2 + 5x - 24>0
x^2 + 5x - 24=0
D= √(b^2 - 4ac) = √(5^2 - 4 * 1 * (-24)) = √(25 + 96) = √121 = 11
x = (-b +/- √D)/2a
x1 = -5 + 11 / 2 =3
x2 = -5-11 /2 = -8
Получается три интервала:
x<-8
-8<x<3
x>3
чередуем знаки справа налево, первый - плюс (так как нам нужно больше, то выбираем там, где плюс)
получаем x<-8 и x>3
2) (x-5)(x-7)(x+3)<0
(x-5)(x-7)(x+3)=0
x = 0 тогда, когда один из множителей равен нулю:
x=5; x=7; x=-3
получаем четыре интервала (см фотку)
выбераем там, где минус, т. к. нужен знак < по условию
x<-3 и 5<x<7
1) Найдем нулю нашей функции. Для чего разложим на множители формулу, которой она задана, с введения новых вс членов.
Из
следует:
а)
, отсюда
- нуль функции
б)
,
, отсюда
Итак, функция
обращается в нуль в точках
,
и
2) Найдем возможные точки экстремума нашей функции. Для чего найдем производную функции
:
Разложим квадратный трехчлен, стоящий в правой части (1), на целые множители. Для чего найдем дискриминант этого квадратного трехчлена:
Тогда с (2) выражение (1) примет вид метода интервалов найдем промежутки, на которых производная функции
принимает положительные и отрицательные значения:
а)
при x принадлежащем объединению промежутков
(-бесконечности; 1/3)U(5; +бесконечности )
б)
при x принадлежащем промежутку (1/3; 5)
Известно, что промежутки, на которых производная функции положительна, являются промежутками возрастания функции!
На промежутках, где
, функция убывает!
Поскольку при переходе через точку x=1/3 производная меняет знак с плюса на минус, то эта точка - точка максимума
Поскольку при переходе через точку x=5 производная меняет знак с минуса на плюс, то эта точка - точка минимума. Итак,