Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение:
Пусть большее число будет x, числа последовательны,тогда второе число будет( x-1), а третье x-2. Составим уравнение:
x^2-(x-1)*(x-2)=19
x^2-x^4+2x^2+x^2-2=19
x^4-4x^2+21=0
Решим бинарное уравнение: заменим x^2 на у: получим квадратное уравнение: y^2-4y+21=0
Так как |а| =1 , то решаем по теореме Виета:{y1+y2=4
{y1*y2=21>y1=-3,y2=7
Следовательно y=-3(не подходит, так как квадрат числа не может быть отрицательным>x=7-большее число: x-1=7-1=6-второе число, x-2=7-2=5- третье число.
ответ: это числа 5,6 и 7
S = v · t - формула пути
Скорость (v) Время (t) Расстояние (S)
До привала 4 км/ч n ч (4 · n) км
После привала 3 км/ч m ч (3 · m) км
Весь путь - - (4n + 3m) км
ответ: 4n + 3m км.