В решении.
Объяснение:
В квартире планируется создать две комнаты одинаковой ширины. Длина первой комнаты в 8 раз больше ширины, а длина второй комнаты - 4 метра. Если площадь квартиры 60 м², найдите ширину комнат.
х - ширина комнат.
8х - длина первой комнаты.
8х² - площадь первой комнаты.
4*х - площадь второй комнаты.
По условию задачи уравнение:
8х² + 4х = 60
8х² + 4х - 60 = 0, квадратное уравнение, ищем корни:
(прежде разделить уравнение на 8 для упрощения):
х² + 0,5х - 7,5 = 0
D=b²-4ac =0,25 + 30 = 30,25 √D=5,5
х₁=(-b-√D)/2a
х₁=(-0,5-5,5)/2 = -3, отбрасываем, как отрицательный.
х₂=(-b+√D)/2a
х₂=(-0,5+5,5)/2
х₂=5/2
х₂=2,5 (м) - ширина комнат.
Проверка:
2,5 * 8 = 20 (м) - длина первой комнаты.
20*2,5 = 50 (м²) - площадь первой комнаты.
4*2,5 = 10 (м²) - площадь второй комнаты.
50 + 10 = 60 (м²) - площадь квартиры, верно.
Соотношение параметров квадрата
Приведём формулы периметра Р и площади S квадрата через длину стороны а.
периметр квадрата Р равен учетверённому размеру его стороны а: Р = 4 * а;
площадь квадрата S равна квадрату его стороны а: S = a²;
периметр и площадь квадрата связаны между собой. так как в их формулах общий параметр - сторона квадрата: S = P² / 16.
Для понятного объяснения задачи увеличим по заданию его сторону в 3 раза.Тогда новая сторона квадрата станет а1 = 3 * а.
Вычисление увеличения периметра и площади квадрата
Чтобы узнать, как при этом изменились периметр и площадь квадрата, подставим в формулы Р и S вместо "а" новое значение стороны "а1". Тогда:
Р1 = 4 * а1 = 4 * (3 * а ) = 12 * а;
S1 = а1² = (3 * а)² = 9 * а².
После того, как выразили новый периметр Р1 и площадь S1 через начальное значение стороны "а", можно ответить на вопрос задания:
для вычислений используем написанные выше формулы для площади S и периметра P;
чтобы узнать, во сколько раз увеличится периметр квадрата, нужно разделить Р1 на Р;
чтобы узнать, во сколько раз увеличится площадь квадрата, нужно разделить S1 на S.
Согласно выше сказанного, ответим на вопросы задания:
во сколько раз увеличился периметр квадрата, для чего разделим (Р1 : Р) = (12 * а) : (4 * а) = 3 (раза);
во сколько раз увеличится площадь квадрата, для чего разделим (S1 : S) = (9 * а²) : (а²) = 9 (раз).
заметим, что если периметр квадрата увеличился в 3 раза, как и сторона квадрата, то площадь, увеличивается в (3)² = 9 раз.
ответ: периметр увеличится в 3 раза, площадь увеличится в 9 раз.