Решаем с использованием формулы разности квадратов: a² - b² = (a - b)(a + b)
1) (х+1)² = 64 (х+1)² - 64 = 0 (х+1)² - 8² = 0 (х+1 - 8)(х+1 + 8) = (х - 7) (х + 9) = 0 Произведение равно нулю, если хотя бы один из множителей равен нулю. Приравниваем каждый из множителей к нулю. х - 7 = 0 х₁ = 7
Метод интервалов – простой решения дробно-рациональных неравенств. Так называются неравенства, содержащие рациональные (или дробно-рациональные) выражения, зависящие от переменной. Метод интервалов позволяет решить его за пару минут.В левой части этого неравенства – дробно-рациональная функция. Рациональная, потому что не содержит ни корней, ни синусов, ни логарифмов – только рациональные выражения. В правой – нуль.Метод интервалов основан на следующем свойстве дробно-рациональной функции.Дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Найдем нули функции в левой части нашего неравенства. Для этого разложим числитель на множители. Напомним, как раскладывается на множители квадратный трехчлен, то есть выражение вида . Рисуем ось и расставляем точки, в которых числитель и знаменатель обращаются в нуль.Эти точки разбивают ось на N промежутков.Определим знак дробно-рациональной функции в левой части нашего неравенства на каждом из этих промежутков. Мы помним, что дробно-рациональная функция может менять знак только в тех точках, в которых она равна нулю или не существует. Это значит, что на каждом из промежутков между точками, где числитель или знаменатель обращаются в нуль, знак выражения в левой части неравенства будет постоянным — либо «плюс», либо «минус».
1) Решение:
1,4х-0,9х= 4+12
0,5х=16
х=16:0,5
х=32
2) 5х+3х=9+7
8х=16
х=2