Пусть х км/ч - скорость течения реки, тогда скорость теплохода по течению 18 + х км/ч, против течения 18 - х км/ч. Зная, что в каждую сторону он плыл 160км, останавливался 2 часа и на весь путь ушло 20часов, составим и решим уравнение:
160/(18 +х ) + 160/(18 - х) + 2 = 20 ( общий знаменатель ( 18 +х) (18 -х))
160(18-х)+160(18-х)-18(18-х)(18+х) = 0
2880-160х+2880+160х-5832+18x^{2} =0
18x^{2} - 72 =0
18x^{2} = 72
x^{2} = 4
х=-2 - не подходит, т.к скорость - число больше нуля
х = 2
ответ: 2 км/ч скорость течения реки
Если осевое сечение конуса - равносторонний треугольник, то в конусе половина образующей равна радиусу основания. Проведем осевое сечение и получившийся треугольник обозначим ABC, где A - вершина конуса. Опустим высоту AH - которая явл. так же медианой и биссектрисой.
BH обозначим r - радиус окружности в основании конуса.
BA тогда будет 2r
Из прямоугольного треугольника ABH:
AH² = BA² - BH²
AH² = 4r² - r²
AH² = 3r²
AH = r√3
Объем конуса V = πr²h/3 (где r - радиус основания, а h - высота)
V = πBH²AH²/3 = πr²r√3/3 = πr³√3/3
Но V так же равно 36.
πr³√3/3 = 36
r³ = 36√3/π
r = ∛(36√3/π)
Вычислим радиус вписанного шара - R
Осевое сечение шара является вписанной окружностью для треугольника в осевом сечении конуса. R этой окружности и R шара - одинаковы.
Так как треугольник ABC равносторонний R = a√3/6 (а - сторона треугольника)
Сторона треугольника - 2r = 2∛(36√3/π)
R = ∛(36√3/π)*√3/6
Vшар = 4πR³/3
Vшар = 4π(∛(36√3/π)*√3/6)³/3 = (4π(36√3/π)*3√3/36*6)/3 = 4*36√3*3√3/36*6*3 = 4/2 = 2
ответ: 2
а) х=4
б) х=4
Объяснение: