{a1+ a6=11 a2+a4=10 Выразим а2, а4 , а6 через первый член арифметической прогрессии и разность прогрессии (d) a2=a1+d a4=a1+3d a6=a1+5d и подставим в систему: {a1+a1+5d=11 a1+d+a1+3d=10 {2a1+5d=11 2a1+4d=10 Решим систему методом сложения. Умножим первое уравнение на (-1) и сложим со вторым: {-2a1-5d=-11 + 2a1+4d=10 -d=-1 d=1 2a1+4=10 a1=3 (подставили найденное значение d во второе уравнение системы и нашли первый член прогрессии.) По формуле суммы n-первых членов прогрессии найдём сумму первых шести членов этой прогрессии: S6=(2·3+5 )\2·6=33 (Sn=(2a1+d(n-1))\2·n) ответ:33
1-вся работа х-производительность мастера в день у-производительность ученика в день Система уравнений Первое 0,5/х=0,5/(х+у)+2 0,5/(х+у)-0,5/х+2=0 разделим на 0,5 1/(х+у)-1/х+4=0 умножим на х(х+у) х-(х+у)+4х(х+у)=0 х-х-у+4х²+4ху=0 -у+4х²+4ху=0 у-4ху=4х² у(1-4х)=4х² у=4х²/(1-4х)
Второе 1/у-1/х=5 умножим на ху х-у=5ху у+5ху=х у(1+5х)=х у=х/(1+5х)
Объяснение:
тут идет разделение на группы