М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
DevilingKeks
DevilingKeks
31.05.2023 07:24 •  Алгебра

При якому значенні параметра n рівняння (n - 3) x = 6 a) не має коренів
б) має коренем число 3

👇
Ответ:
умар53
умар53
31.05.2023

a) если n =3 корней нет

б)(n-3)X=6

если икс равен 3 то n =5

4,5(47 оценок)
Открыть все ответы
Ответ:
viktoriapleva
viktoriapleva
31.05.2023

Пусть v катера будет х, а v течения реки будет у. Если катер часа по течению, то за это время он расстояние: (х+у)3. Когда он проходил по озеру, то находился в стоячей воде без течения и расстояние 3х. За 6 часов он расстояние 114км, и теперь составим уравнение:

(х+у)3+3х=114. Разберём вторую часть задачи. Катер против течения 4 часа, поэтому за это время он х-у)4. Так как он расстояние на 10 км больше, чем за 3 часа по озеру, то по озеру он пройдёт 2х и разница составляет 10км. По этим данным составим второе уравнение:

(х-у)4-3х=10. Решим систему уравнений:

{(х+у)3+3х=114

{(х-у)4-3х=10

{3х+3у+3х=114

{4х-4у-3х=10

{6х+3у=114 |÷3

{х-4у=10

{2х+у=38

{х=10+4у.

Подставим эти значения в первое уравнение:

2х+у=38

2(10+4у)+у=38

20+8у+у=38

9у=38-20

9у=18

у=18÷9

у=2; итак v течения реки=2км/ч

Теперь подставим в уравнение значение у:

х=10+4у

х=10+4×2=10+8=18км/ч.

ответ: v катера=18км/ч;

v течения реки=2км/ч

4,8(51 оценок)
Ответ:
9872105
9872105
31.05.2023

1)

4^x - 14\cdot 2^x - 32 = 0\\\\(2^2)^x - 14\cdot 2^x - 32 = 0\\\\(2^x)^2 - 14\cdot 2^x - 32 = 0

Введём замену:  t = 2^x\ , t0\ .

t^2 - 14t - 32 = 0

По теореме Виета:

\begin{equation*}\begin{cases}t_{1}t_{2} = -32\\t_{1} + t_{2} = 14\end{cases}\end{equation*}\ \ \ \ \ \Big|\ \boxed{t = 16; t = -2}.

Но так как t 0 , то -2 не является решением этого уравнения. Выполняем обратную замену:

2^x = 16\\2^x = 2^4\\\\\boxed{\textbf{x = 4}}

ответ: 4.

2)

4^{x-3} = 32^x\\\\(2^2)^{x-3} = (2^5)^x\\\\2^{2(x-3)} = 2^{5x}\\\\2(x-3) = 5x\\\\2x - 6 - 5x = 0\\\\-3x = 6\\\\\boxed{\textbf{x = -2}}

ответ: -2.

3)

5^{2x} - 4\cdot 5^x - 5 = 0\\\\(5^x)^2 - 4\cdot 5^x - 5 = 0

Введём замену: t = 5^x\ ,\ t 0.

t^2 - 4t - 5 = 0

По теореме Виета:

\begin{equation*}\begin{cases}t_{1}t_{2} = -5\\t_{1}+t_{2} = 4\end{cases}\end{equation*}\ \ \ \ \ \Big|\ \boxed{t = 5; t = -1}

Но так как t 0 , то -1 не является решением этого уравнения. Выполняем обратную замену:

5^x = 5\\\\\boxed{\textbf{x = 1}}

ответ: 1.

4)

5^{x+2} + 11\cdot 5^x = 180\\\\5^x \cdot 5^2 + 11\cdot 5^x = 180\\\\5^x(25+11) = 180\\\\5^x\cdot 36 = 180\ \ \ \Big| :36\\\\5^x = 5\\\\\boxed{\textbf{x = 1}}

ответ: 1.

5)

9^{\sqrt{x-5}} - 27 = 6\cdot 3^{\sqrt{x-5}}

Для начала кое-что учтём: подкоренное выражение всегда неотрицательно. То есть:

x - 5 \geq 0\\x \geq 5

Продолжаем решение:

(3^2)^{\sqrt{x-5}} - 6\cdot 3^{\sqrt{x-5}} - 27 = 0\\\\(3^{\sqrt{x-5}})^2 - 6\cdot 3^{\sqrt{x-5}} - 27 = 0

Введём замену: t = 3^{\sqrt{x-5}}\ ,\ t0.

t^2 - 6t - 27 = 0

По теореме Виета:

\begin{equation*}\begin{cases}t_{1}t_{2} = -27\\t_{1}+t_{2} = 6\end{cases}\end{equation*}\ \ \ \ \ \Big|\ \boxed{t = 9; t = -3}

Но так как t 0 , то -3 не является решением этого уравнения. Выполняем обратную замену:

3^{\sqrt{x-5}} = 9\\\\3^{\sqrt{x-5}} = 3^2\\\\\sqrt{x-5} = 2\\\\x - 5 = 4\\\\\boxed{\textbf{x = 9}}

ответ: 9.

4,5(82 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ