Нужный график --синяя линия, график функции модуль синуса (красный цвет пунктиром) получается из графика синуса (тоже пунктирная линия) отображением "вверх" нижней части графика --симметрично относительно оси ОХ (т.к. значения функции не могут быть отрицательными))) при сложении получится, что будут участки, на которых будут складываться противоположные значения (т.е. их сумма =нулю) и будут участки, на которых будут складываться равные значения, т.е. обычные значения синуса удвоятся))) от нуля до пи будет кривая как у синусоиды, от пи до 2*пи будет прямая линия... а дальше все повторяется)))
Поскольку переменная х входит в чётной степени, то график заданной функции симметричен относительно оси у. Производная этой функции равна нулю пр х = 0. Подставив это значение в уравнение функции, получаем у = 1. Исследуем поведение производной вблизи точки х = 0. х 0.5 0 -0.5 у' -0.6875 0 0.6875. Производная переходит с + на -, значит, при х = 0 имеем максимум функции, равный у = 1. Минимальное значение на заданном отрезке найдём, подставив значение х = +-3 в уравнение (достаточно х = 3, так как функция чётная) ymin = 1-3⁴-3⁶ = 1-3⁴*(1+3²) = 1-81*(1+9) = 1-810 = -809. ответ при (х=+-3) : умакс = 1, умин = -809.
5.11
{5;+бесконечность}
5.12
[2;+бесконечность}
5.13
{3;5}
5.14
[0;1}