Чтобы доказать, что треуг равноб, нужно найти длины всех трех сторон: координаты стороны АВ (из конца вычитаем начало) : (2-(-6); 4-1)=(8;-3) АВ= корень квадратный из (восемь в квадрате плюс (минус три в квадрате) = корень квадратный из семидесяти трех аналогично все остальные стороны ВС=(2-2;-2-4)=(0;-6) длина ВС = корень квадратный из (ноль в квадрате плюс (минус шесть в квадрате)) = корень из 36 = 6 АС=(2-(-6);-2-1)=(8;-3) АС=корень квадратный из суммы квадратов координат получаем, что и длина АС равна корень из 75 АВ=АС, то есть треуг равноб
1) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 1)^2*(x + 2) = 0 (x - 1)^2 = 0 x - 1 = 0 x = 1
x + 2 = 0 x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 1)(x - 3) = 0 x^2 = 1 x₁ = 1 x₂= - 1;
x - 3 = 0 x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 4)^2*(x - 3) = 0 x - 4 = 0 x = 4
x - 3 = 0 x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 4)(x + 1) = 0
координаты стороны АВ (из конца вычитаем начало) : (2-(-6); 4-1)=(8;-3)
АВ= корень квадратный из (восемь в квадрате плюс (минус три в квадрате) = корень квадратный из семидесяти трех
аналогично все остальные стороны
ВС=(2-2;-2-4)=(0;-6)
длина ВС = корень квадратный из (ноль в квадрате плюс (минус шесть в квадрате)) = корень из 36 = 6
АС=(2-(-6);-2-1)=(8;-3)
АС=корень квадратный из суммы квадратов координат
получаем, что и длина АС равна корень из 75
АВ=АС, то есть треуг равноб