7.5. Представьте в виде степени и найдите значение выражения: 1) 5(5a3) 2а2 при а = (0,2)-1; 2) (0,5a-2)-2: (32a°) при а = (0,5) 4; 3) (23a 3) 1. 64а 4 : a * при а = -0,125; 4) 27(-3°a3) : (35а 1) при а !!
Непустое подмножество линейного пространства называется линейным подпространством, если линейные операции, то есть сложение векторов и умножение их на число, не выводят за пределы этого множества. Аксиомы линейного пространства для этого множества проверять не обязательно - они будут выполнены автоматически.
1) Умножив такой вектор на отрицательное число, получим вектор, конец которого лежит во второй четверти. Поэтому ответ в первом случае отрицательный.
2) Складывая векторы, у которых координаты с четными номерами равны 0, а также умножая такие векторы на любое число, снова получаем вектор из этого множества. Поскольку оно непусто, оно является линейным подпространством.
3) Складывая векторы, у которых координаты с четными номерами равны между собой, а также умножая такие векторы на любое число, снова получаем вектор из этого множества. Поскольку оно непусто, оно является линейным подпространством.
Т.к. сумма членов с четными номерами меньше суммы членов с нечетными, то прогрессия содержит нечетное количество членов. Обозначим это количество n = 2m+1. Первый член прогрессии обозначим а1, последний аN. Из нечетных членов прогрессии можно составить новую прогрессию, у которой первый член будет тоже а1, а последний аN, количество членов в этой прогрессии = (m+1). Сумма членов такой прогресс S₁=(a1+aN)*(m+1)/2 Из четных членов прогрессии получится прогрессия, у которой первый член будет (а1+d), а последний (aN-d), в этой прогрессии будет m членов, а их сумма S₂=(a1+d+aN-d)*m/2. = (a1+aN)*m/2 Т.к. S₂ : S₁ = 12 : 13, получили уравнение: ответ: 25 членов
Непустое подмножество линейного пространства называется линейным подпространством, если линейные операции, то есть сложение векторов и умножение их на число, не выводят за пределы этого множества. Аксиомы линейного пространства для этого множества проверять не обязательно - они будут выполнены автоматически.
1) Умножив такой вектор на отрицательное число, получим вектор, конец которого лежит во второй четверти. Поэтому ответ в первом случае отрицательный.
2) Складывая векторы, у которых координаты с четными номерами равны 0, а также умножая такие векторы на любое число, снова получаем вектор из этого множества. Поскольку оно непусто, оно является линейным подпространством.
3) Складывая векторы, у которых координаты с четными номерами равны между собой, а также умножая такие векторы на любое число, снова получаем вектор из этого множества. Поскольку оно непусто, оно является линейным подпространством.