(-∞ ;-3) => функция выпукла;
(-3; +∞) => функция вогнута;
(-∞ ;-6) <=> f'(x) > 0 => функция возрастает;
(-6; 0) <=> f'(x) < 0 => функция убывает;
(0; +∞) <=> f'(x) > 0 => функция возрастает ;
Объяснение:
1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = 3x2+18x
или
f'(x)=3x(x+6)
Находим нули функции. Для этого приравниваем производную к нулю
x(x+6) = 0
Откуда:
x1 = 0
x2 = -6
(-∞ ;-6) <=> f'(x) > 0 => функция возрастает;
(-6; 0) <=> f'(x) < 0 => функция убывает;
(0; +∞) <=> f'(x) > 0 => функция возрастает ;
В окрестности точки x = -6 производная функции меняет знак с (+) на (-). Следовательно, точка x = -6 - точка максимума. В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума.
2. Найдем интервалы выпуклости и вогнутости функции. Вторая производная.
f''(x) = 6x+18
Находим корни уравнения. Для этого полученную функцию приравняем к нулю.
6x+18 = 0
Откуда точки перегиба:
x1 = -3
(-∞ ;-3) => функция выпукла;
(-3; +∞) => функция вогнута;
1) ищем производную
2) приравниваем к нулю, решаем получившееся уравнение
3) определяем, какие корни попадают в указанный промежуток
4) ищем значение функции на концах промежутка и в точке,
5) выбираем наибольший ответ
Начали.
1)Производная = 6/Cos²x - 6
2) 6/Cos²x - 6 =0
6/Cos²x = 6
Cos²x = 1
а) Cos x = 1 б) Cos x = -1
x = 2πk, где k∈Z x =πn,где n∈Z
3) Из этих ответов в указанный промежуток попадает только х =0
4) у = 6tg 0 - 6·0 +6 = 6
y = 6tg (-π/4) - 6·π/4 +6= -6 -6π/4 +6 = -3π/2
5) у =6