(y+2)²-(4y)² = (y+2-4y)×(y+2+4y) =
(2-3y)×(5y+2)
(y+2)²-(4y)² = (2-3y)×(5y+2)
В решении.
Объяснение:
Постройте график функции у. Найдите вершину и ось симметрии параболы и опишите свойства функции.
2) у = -х² + 4,6;
Уравнение квадратичной функции, график - классическая парабола у = х² со сдвигом по оси Оу вверх на 4,6 единицы, ветви направлены вниз.
а) Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -3 -2 -1 0 1 2 3
у -4,4 0,6 3,6 4,6 3,6 0,6 -4,4
По вычисленным точкам построить параболу.
б) Вычислить вершину параболы:
Формула: х₀ = -b/2a;
у = -х² + 4,6;
х₀ = 0/-2
х₀ = 0;
у₀ = 0² + 4,6
у₀ = 4,6;
Координаты вершины параболы: (0; 4,6).
в) Вычислить ось симметрии:
Х = х₀;
Х = 0.
г) Свойства квадратичной функции у = -х² + 4,6:
1) Областью определения функции является множество всех действительных чисел, т.е. D(у): (-∞; +∞);
2) Множеством значений функции является промежуток
Е(у): [4,6; -∞);
3) Значение функции y = 4,6 является наибольшим, а наименьшего значения функция не имеет.
4) Функция является четной, график симметричен относительно оси Оу.
5) Нули функции: х = -2,15; х = 2,15.
6) На промежутке х∈(0; +∞) функция убывающая, на промежутке х∈(-∞; 0) - возрастающая.
7) Функция принимает положительные значения на промежутке х∈(-2,15; 2,15);
8) Функция принимает отрицательные значения на промежутке х∈(-∞; -2,15)∪(2,15; +∞).
6) у = -(х+3)² - 2;
Уравнение квадратичной функции, график - классическая парабола у = х² со смещённым центром, со сдвигом по оси Ох влево на 3 единицы и сдвигом по оси Оу вниз на 2 единицы, ветви направлены вниз.
а) Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
Таблица:
х -5 -4 -3 -2 -1
у -6 -3 -2 -3 -6
По вычисленным точкам построить параболу.
б) Вычислить вершину параболы:
у = -(х + 3)² - 2;
у = -(х² + 6х + 9) -2
у = -х² - 6х - 9 - 2
у = -х² - 6х - 11;
Формула: х₀ = -b/2a;
х₀ = 6/-2
х₀ = -3;
у₀ = -(-3 + 3)² - 2
у₀ = -0² - 2
у₀ = -2;
Координаты вершины параболы: (-3; -2).
в) Вычислить ось симметрии:
Х = х₀;
Х = -3.
г) Свойства квадратичной функции у = -(х + 3)² - 2:
1) Областью определения функции является множество всех действительных чисел, т.е. D(у): (-∞; +∞);
2) Множеством значений функции является промежуток
Е(у): [-2; -∞);
3) Значение функции y = -2 является наибольшим, а наименьшего значения функция не имеет.
4) Функция общего вида. Не является ни чётной, ни нечётной.
5) Нулей функции нет: график ниже оси Ох, нет с ней пересечения.
6) На промежутке х∈(-3; +∞) функция убывающая, на промежутке х∈(-∞; -3) - возрастающая.
7) Функция не имеет положительных значений (график ниже оси Ох).
8) Функция принимает отрицательные значения на промежутке х∈(-∞; +∞).
№1. Решить уравнение.
Домножим левую и правую часть уравнения на .
Получим:
Обратите внимание на то, что корень не подходит.
Почему? Давайте посмотрим на знаменатель исходного уравнения: . Если мы подставим , то получим , а на 0 делить нельзя.
ответ: x =
№2. Решить уравнение.
Общий знаменатель в левой части - это .
ответ: x₁ = , x₂ =
№3. Решить уравнение.
Общий знаменатель в левой части - это .
Получаем, что - любое число.
ответ: - любое число.
№4. Решить задачу.
Пусть км/ч - собственная скорость лодки, тогда скорость по течению реки равна км/ч, а против течения км/ч.
Составим уравнение:
Так как скорость не может быть отрицательной, то отсеиваем корень .
Таким образом, получаем, что км/ч - собственная скорость лодки.
Значит, скорость лодки против течения равна км/ч
ответ: км/ч.
Успехов.
(y+2)^2-4y^2=(y+2-2y)*(y+2+2y)=(2-y)*(2+3y). ответ: (2-y)*(2+3y). ^-это степень.