Подробное решение! моторнаялодка км и вернулась в пункт отправления, затратив на обратный путь на 6 часов меньше. найдите скорость течения, если скорость лодки в неподвижной воде равна 11 км/ч. ответ дайте в км/ч.
Обозначим скорость течения реки за х км/час,тогда скорость лодки по течению равна (11+х) км/час, а против (11-х) км/час Уравнение 112/(11+х)+6=112(11-х) 3х^2+112х=363 х= 3 км/час - скорость течения реки.
Из двух последних уравнений следует, что x4=x5. Тогда из первого и третьего уравнений находим x1=x2+1. Из первого уравнения находим x4=x5=x6+1, а из третьего и четвёртого уравнения следует x3=x4+1=x5+1=x6+2. Из четвёртого и пятого уравнения следует x2=x6+3. Наконец, из первого и шестого уравнений следует Отсюда x2=x1-1, x3=x1-2, x4=x5=x1-3, x6=x1-4, x7=x1-5. Складывая все уравнения системы, получаем 2*x1+2*x2+2*x3+2*x4+2*x5+2*x6+2*x7=2*(x1+x2+x3+x4+x5+x6+x7)=2*(x1+x1-1+x1-2+x1-3+x1-3+x1-4+x1-5)=2*(7*x1-18)=9+8+8+9+6+4+4=48, откуда 7*x1-18=48/2=24, 7*x1=42, x1=6 лет - первому сыну. Тогда x2=5, x3=4, x4=x5=3, x6=2, x7=1. ответ: первому сыну - 6 лет, второму - 5, третьему - 4, четвёртому и пятому - по 3 года, шестому - 2 года, седьмому - 1 год.
Пусть за (х) дней одна работу может выполнить Катя за (у) дней одна работу может выполнить Алиса, x < y тогда за 1 день Катя может выполнить (1/х) часть работы, за 1 день Алиса может выполнить (1/у) часть работы. (1/х) + (1/у) = 1\6 0.6*х + 0.4*у = 12 система (х+у) / (ху) = 1/6 6х + 4у = 120
6х + 6у = ху 6х = 120 - 4у
6*(120 - 4у + 6у) = (120 - 4у)*у 6*120 + 12у = 120у - 4у² у² - 27у + 180 = 0 по т.Виета корни 12 и 15 у = 12, тогда х = (120 - 48)/6 = 20-8 = 12 у = 15, тогда х = (120 - 60)/6 = 20-10 = 10 ответ: за 10 дней может напечатать курсовую Катя, т.к. она печатает быстрее Алисы.
Уравнение
112/(11+х)+6=112(11-х)
3х^2+112х=363
х= 3 км/час - скорость течения реки.