Графическое решение - это построение двух графиков: параболы у = х² и прямой линии у = -х + 6. Точки их пересечения и есть решение заданного уравнения.
Проверку правильности построения и определения точек можно выполнить аналитически. х² = 6 - х х² + х - 6 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант:D=1^2-4*1*(-6)=1-4*(-6)=1-(-4*6)=1-(-24)=1+24=25; Дискриминант больше 0, уравнение имеет 2 корня:x_1=(√25-1)/(2*1)=(5-1)/2=4/2=2;x_2=(-√25-1)/(2*1)=(-5-1)/2=-6/2=-3.
График и таблица точек для построения параболы даны в приложении. Для построения прямой достаточно двух точек: х = 0, у = 6, х = 3, у = -3+6 = 3
Данный график представляет собой гиперболу , отображенную симметрично оси абсцисс и сдвинутую на 5 единиц вниз. Помним про то, что функция не определена в точках 0 и 2.
Прямая представляет собой прямую, параллельную оси абсцисс, проходящую через точку (0; m).
Прямая не имеет общих точек с построенным графиком при (асимптота гиперболы по построению, так как сдвиг проводился на 5 единиц вниз) и при (именно это значение принимала бы функция в точке 2, но эта точка не принадлежит области ее определения).
Абсолютная погрешность 0,22%
20,46
Объяснение: